《最新反常积分ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新反常积分ppt课件.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、无穷限的反常积分一、无穷限的反常积分引例引例. 曲线21xy 和直线1x及 x 轴所围成的开口曲边梯形的面积21xy A1可记作12dxxA其含义可理解为 bbxxA12dlimbbbx11limbb11lim1二、无界函数的反常积分二、无界函数的反常积分引例引例:曲线xy1所围成的1x与 x 轴, y 轴和直线开口曲边梯形的面积可记作10dxxA其含义可理解为 10dlimxxA12lim0 x)1 (2lim02xy10A1xy定义定义2. 设, ,()(baCxf而在点 a 的右邻域内无界,0取存在 ,xxfxxfbabad)(limd)(0这时称反常积分xxfbad)(收敛 ; 如
2、果上述极限不存在,就称反常积分xxfbad)(发散 .类似地 , 若, ),)(baCxf而在 b 的左邻域内无界,xxfxxfbabad)(limd)(0若极限baxxfd)(lim0数 f (x) 在 a , b 上的反常积分, 记作则定义则称此极限为函 若被积函数在积分区间上仅存在有限个第一类 说明说明: ,)(,)(外连续上除点在若bcacbaxf而在点 c 的无界函数的积分又称作第二类反常积分第二类反常积分, 无界点常称邻域内无界 ,xxfbad)(xxfcad)(xxfbcd)(xxfcad)(lim110 xxfbcd)(lim220为瑕点瑕点(奇点奇点) .例如,xxxd111
3、12xxd) 1(11间断点,而不是反常积分. 则本质上是常义积分, 则定义注意注意: 若瑕点,)()(的原函数是设xfxF的计算表达式 : xxfbad)()()(aFbFxxfbad)()()(aFbFxxfbad)()()(aFbF则也有类似牛 莱公式的若 b 为瑕点, 则若 a 为瑕点, 则若 a , b 都为瑕点, 则, ),(bac则xxfbad)()()(cFbF)()(aFcF可相消吗可相消吗?112dxx因211111x下述解法是否正确: , 所以积分收敛.例例4. 计算反常积分. )0(d022axaxa解解: 显然瑕点为 a , 所以原式0arcsinaax1arcsin
4、2例例5. 讨论反常积分112dxx的收敛性 . 解解:112dxx012dxx102dxx101x011x所以反常积分112dxx发散 .例例6. 证明反常积分baqaxx)(d证证: 当 q = 1 时,当 q 1 时收敛 ; q1 时发散 .baaxxdbaax ln当 q1 时baqaxx)(dabqqax1)(11q,1)(1qabq1q,所以当 q 1 时, 该广义积分收敛 , 其值为;1)(1qabq当 q 1 时, 该广义积分发散 .例例7.解解:,)2() 1() 1()(32xxxxxf设求.d)(1)(312xxfxfI)(20 xfxx为与因为的无穷间断点, 故 I 为
5、xxfxfd)(1)(2)(1)(d2xfxfCxf)(arctan012d)(1)(xxfxfI202d)(1)(xxfxf322d)(1)(xxfxf反常积分.)(arctanxf)(arctanxf02)(arctanxf232222732arctan222732arctan10内容小结内容小结 1. 反常积分积分区间无限被积函数无界常义积分的极限 2. 两个重要的反常积分apxxdbaqaxx)(d1p1p)0( abaqxbx)(d1q,1)(1qabq1q,) 1(11pap说明说明: (1) 有时通过换元 , 反常积分和常义积分可以互相转化 .例如 ,1021dxx)令txsin(20dtxxxd11104210121d122txxx102112)()d(xxxx)1(xxt令022dtt(2) 当一题同时含两类反常积分时, 应划分积分区间,分别讨论每一区间上的反常积分.P260 1 ; 2 ; 3提示提示: P256 题22)(lndkxxx2)(ln)d(lnkxx,1时当k12)2)(ln1(1)(lnd)(kkkxxxkI,)2)(ln1()(1kkkf令求其最大值 .作业作业
限制150内