最新反渗透和纳滤的的工艺过程设计精品课件.ppt
《最新反渗透和纳滤的的工艺过程设计精品课件.ppt》由会员分享,可在线阅读,更多相关《最新反渗透和纳滤的的工艺过程设计精品课件.ppt(187页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、反渗透和纳滤的的工艺过反渗透和纳滤的的工艺过程设计程设计1 1 系统设计要求系统设计要求1.1 1.1 进水水质进水水质 水样是一定时间内所要分析水源的水质代表。水样是一定时间内所要分析水源的水质代表。 对水质要有一全面的把握,必须针对水源特点在不对水质要有一全面的把握,必须针对水源特点在不同时期收集水样,进行分析比较,了解其变化及变化原同时期收集水样,进行分析比较,了解其变化及变化原因。这对反渗透系统的有效设计(因。这对反渗透系统的有效设计(预处理、产水量、回预处理、产水量、回收率、脱除性能、压力、流速收率、脱除性能、压力、流速),正当的操作,诊),正当的操作,诊断系统存在的问题和准确评价系
2、统性能等方面至关重要。断系统存在的问题和准确评价系统性能等方面至关重要。工艺过程设计系统设计要求工艺过程设计系统设计要求1.4 1.4 回收率回收率 回收率的确定影响到膜组件的选择和工艺的回收率的确定影响到膜组件的选择和工艺的确定。根据产水水量和回收率确定膜元件的个数。确定。根据产水水量和回收率确定膜元件的个数。一般海水淡化回收率在一般海水淡化回收率在30304545,纯水制备在,纯水制备在70708585;而实际设计过程中应根据预处理、进;而实际设计过程中应根据预处理、进水水质等的条件确定。水水质等的条件确定。 工艺过程设计系统设计要求工艺过程设计系统设计要求1.5 1.5 产水量的衰减产水
3、量的衰减 反渗透膜在使用过程中会随着使用时间的延长,膜反渗透膜在使用过程中会随着使用时间的延长,膜的产水量会发生衰减。这主要是由于膜长时间在的产水量会发生衰减。这主要是由于膜长时间在高温高高温高压压下运行,在温度和压力的协同作用下,会出现膜的压下运行,在温度和压力的协同作用下,会出现膜的压密化现象,其结果会造成产水量下降或系统操作压力上密化现象,其结果会造成产水量下降或系统操作压力上升。压密化是膜性能的不可逆衰减,事实上,复合膜比升。压密化是膜性能的不可逆衰减,事实上,复合膜比醋酸纤维素膜更耐压密化。醋酸纤维素膜更耐压密化。 膜污染膜污染也是造成膜产水通量的衰减的主要原因。也是造成膜产水通量的
4、衰减的主要原因。工艺过程设计系统设计要求工艺过程设计系统设计要求 通过下式可计算出反渗透和纳滤膜的产水量下降斜通过下式可计算出反渗透和纳滤膜的产水量下降斜率。率。式中,式中,m为产水量下降斜率;为产水量下降斜率;t为运行时间,为运行时间,h;Q0和和Qt分分别为运行初期和运行别为运行初期和运行t小时后的产水量。小时后的产水量。 通常通常CA类膜类膜m-0.03-0.05,复合膜的,复合膜的m=-0.01-0.02。即。即CA类膜产水量年均下降类膜产水量年均下降10左右,复合膜约为左右,复合膜约为5左右。当然根据进料的不同也有一定的变化。左右。当然根据进料的不同也有一定的变化。 工艺过程设计系统
5、设计要求工艺过程设计系统设计要求tmQQtlglg01.6 1.6 截留率的衰减截留率的衰减 随于反渗透和纳滤膜在使用过程中会受到生随于反渗透和纳滤膜在使用过程中会受到生物或化学因素的作用,膜面材质会发生疏松化,物或化学因素的作用,膜面材质会发生疏松化,导致膜的截留率衰减。导致膜的截留率衰减。 通常通常CACA类膜的年透盐增长率为类膜的年透盐增长率为2020左右,复左右,复合膜约为合膜约为1010左右。当然系统预处理如果不合适左右。当然系统预处理如果不合适或者使用过程中操作不当也会使透盐增长率增大。或者使用过程中操作不当也会使透盐增长率增大。 工艺过程设计系统设计要求工艺过程设计系统设计要求1
6、.7 1.7 产水量随温度的变化产水量随温度的变化 反渗透和纳滤膜的透水通量随过滤介质的温度发生反渗透和纳滤膜的透水通量随过滤介质的温度发生较大的变化。通常根据下式进行计算:较大的变化。通常根据下式进行计算:T T为温度,为温度,即,即每一度变化使产水量变化每一度变化使产水量变化3 3左右左右。也。也可用温度校正因子(可用温度校正因子(TCFTCF)表示。)表示。Kt为与膜材料有关的常数。为与膜材料有关的常数。 工艺过程设计系统设计要求工艺过程设计系统设计要求25003. 1TQQ29812731exp(TKTCFt 温度对膜的通量影响较大,在进行设计过程中要充温度对膜的通量影响较大,在进行设
7、计过程中要充分考虑全年水温的变化。同时采取必要的措施(分考虑全年水温的变化。同时采取必要的措施(进出水进出水换热等换热等)减少温度对系统产水效率的的影响。)减少温度对系统产水效率的的影响。 工艺过程设计系统设计要求工艺过程设计系统设计要求温度温度/校正因子校正因子CA膜膜TFC膜膜50.5900.534100.6850.630150.7860.739200.8900.861251.0001.000301.1151.155351.2351.328401.3661.5202 浓差极化对反渗透和纳滤过程的影响浓差极化对反渗透和纳滤过程的影响2.1 浓差极化的概念浓差极化的概念 在反渗透过程中,由于膜
8、的选择渗透性,溶在反渗透过程中,由于膜的选择渗透性,溶剂(通常为水)从高压侧透过膜,而溶质则被膜剂(通常为水)从高压侧透过膜,而溶质则被膜截留,其浓度在膜表面处上升高;同时发生从膜截留,其浓度在膜表面处上升高;同时发生从膜表面向本体的回扩散,当这两种传质过程达到动表面向本体的回扩散,当这两种传质过程达到动态平衡时,膜表面处的浓度态平衡时,膜表面处的浓度c2高于主体溶液浓度高于主体溶液浓度c1,这种现象称为浓差极化。上述两种浓度的比,这种现象称为浓差极化。上述两种浓度的比率率c2/c1称为浓差极化度。称为浓差极化度。工艺过程设计浓差极化工艺过程设计浓差极化 根据薄膜理论模型描述浓差极化现象,如下
9、根据薄膜理论模型描述浓差极化现象,如下图所示。图所示。 浓差极化理论模型浓差极化理论模型 工艺过程设计浓差极化工艺过程设计浓差极化2.1 浓差极化的计算浓差极化的计算浓差极化度可根据膜液相界面层邻近膜面传质的质浓差极化度可根据膜液相界面层邻近膜面传质的质量平衡的微分方程加以积分,然后将边界条件代入求得。量平衡的微分方程加以积分,然后将边界条件代入求得。主要表达式有:主要表达式有:质量平衡的微分方程:质量平衡的微分方程: cJdxdcDJwabUJcckJccccwwexp)(exp)(313132awwbUJkJexp)(exp)(313132根据边界条件积分可得:根据边界条件积分可得: 或或
10、 工艺过程设计浓差极化工艺过程设计浓差极化 由以上推导的结果可知当流速由以上推导的结果可知当流速 时,时,几乎不存在浓差极化。此时膜高压侧的浓度才几几乎不存在浓差极化。此时膜高压侧的浓度才几乎是均一的,即乎是均一的,即c=c2=c1或相应的渗透压或相应的渗透压=2=1,而在通常的反渗透过程中,流速,而在通常的反渗透过程中,流速U不能太高,因为随着流速不能太高,因为随着流速U的提高,流道的阻力的提高,流道的阻力升高,能耗增加。这样,通常取适当的流速升高,能耗增加。这样,通常取适当的流速U操操作,于是存在一定的浓差极化,即作,于是存在一定的浓差极化,即c=c2c1或或=21。 工艺过程设计浓差极化
11、工艺过程设计浓差极化U2.3 2.3 浓差极化下的传质方程浓差极化下的传质方程(1 1)水通量)水通量(2 2)脱盐率)脱盐率工艺过程设计浓差极化工艺过程设计浓差极化awwbUJPAPAJexp)()(31322323231321exp)(/)(/cccccbUJPBAAPBAAraw13131311)(/cccccPBAArobs(3 3)真实脱盐率)真实脱盐率r r与表观脱盐率与表观脱盐率r robsobs的关系的关系 由上述的浓差极化方程可以推出:由上述的浓差极化方程可以推出: 在半对数坐标纸上作在半对数坐标纸上作 图。在保持图。在保持Jw不变情况下,测定不同不变情况下,测定不同U时的时
12、的robs,计算不同计算不同U时时的的 ,并与相应的,并与相应的 作图,其所得的图线为作图,其所得的图线为直线。直线。工艺过程设计浓差极化工艺过程设计浓差极化awobsobsbUJrrrr303.211lg)1 (lgawobsobsUJrr)1 (lgobsobsrr)1 (lgawUJ 将直线外推之将直线外推之,其与纵坐标的,其与纵坐标的截距截距 为为 ,从而,从而可得真实的脱盐率可得真实的脱盐率r;直线的;直线的斜率为斜率为 ,其中流速指数,其中流速指数a=0.3(层流)或(层流)或0.8(湍流)。这样由直线的斜率可求出(湍流)。这样由直线的斜率可求出比例常比例常数数b及及传质系数传质系
13、数k。 工艺过程设计浓差极化工艺过程设计浓差极化rr)1 (lgb303. 21可以求出反渗透工程上实际存在的浓差极化度可以求出反渗透工程上实际存在的浓差极化度 通常由浓差极化度与能耗权衡,取浓差极化度为通常由浓差极化度与能耗权衡,取浓差极化度为 =1.2。这样,若实验测定得到。这样,若实验测定得到robs=0.950时时r为多为多少?根据上式可知:少?根据上式可知:工艺过程设计浓差极化工艺过程设计浓差极化3132ccccrrrrrrccccobsobsobs1)1 (1)1 (11)1 (131323132cccc958. 095. 0195. 02 . 1195. 0195. 02 . 1
14、11131323132obsobsobsobsrrccccrrccccr2.4 浓差极化对反渗透的影响和缓解措施浓差极化对反渗透的影响和缓解措施 (1)浓差极化对反渗透的影响浓差极化对反渗透的影响 降低水通量降低水通量 根据存在或几乎不存在浓差极化的情况下导出的水通根据存在或几乎不存在浓差极化的情况下导出的水通量方程可知,由于浓差极化时的溶液渗透压项由原先的量方程可知,由于浓差极化时的溶液渗透压项由原先的 变为变为 ,而,而 1,因而,因而此时的水通量此时的水通量JwJw(Jw为几乎不存在浓差极化时的为几乎不存在浓差极化时的水通量)。水通量)。 工艺过程设计浓差极化工艺过程设计浓差极化)(31
15、awbUJexp)(31awbUJexp 降低脱盐率降低脱盐率 比较上述相应情况下的比较上述相应情况下的脱盐率方程脱盐率方程可知,同样因可知,同样因 1,使脱盐率由,使脱盐率由r降为了降为了robs。 导致膜上沉淀污染和增加流道阻力导致膜上沉淀污染和增加流道阻力 由于膜表面浓度增加,使那些水中的由于膜表面浓度增加,使那些水中的微溶盐微溶盐(CaCO3和和CaSO4等)沉淀,等)沉淀,增加膜的透水阻力增加膜的透水阻力和和流道流道压力降压力降,使膜的水通量和脱盐率进一步降低。极化严重,使膜的水通量和脱盐率进一步降低。极化严重的化,导致反渗透膜性能的急剧恶化。的化,导致反渗透膜性能的急剧恶化。 工艺
16、过程设计浓差极化工艺过程设计浓差极化awbUJexp(2)降低浓差极化的途径)降低浓差极化的途径 反渗透过程中的浓差极化反渗透过程中的浓差极化不能消除只能降低不能消除只能降低。其途径。其途径如下所述。如下所述。 合理设计和精心制作反渗透基本单元膜元(组)合理设计和精心制作反渗透基本单元膜元(组)件,使之流体分布均匀,促进湍流等。件,使之流体分布均匀,促进湍流等。 适当控制操作流速,改善流动状态,使膜溶液相适当控制操作流速,改善流动状态,使膜溶液相界面层的厚度减至适当的程度,以降低浓差极化度。通界面层的厚度减至适当的程度,以降低浓差极化度。通常浓差极化度有一个合理的值,约为常浓差极化度有一个合理
17、的值,约为1.2。 适当提高温度,以降低流体粘度和提高溶质的扩散适当提高温度,以降低流体粘度和提高溶质的扩散系数。系数。 工艺过程设计浓差极化工艺过程设计浓差极化3 溶度积和饱和度溶度积和饱和度 在后面的预处理章节中详细讲述。在后面的预处理章节中详细讲述。4 反渗透和纳滤过程的基本方程反渗透和纳滤过程的基本方程4.1 渗透压渗透压 渗透压渗透压随溶质种类、溶液浓度和温度而变,表示方法随溶质种类、溶液浓度和温度而变,表示方法和表达式很多。和表达式很多。(1) 式中式中cp为为溶质的摩尔浓度溶质的摩尔浓度;xf为为溶质的摩尔分数溶质的摩尔分数;为为渗透压系数渗透压系数;Mi为为溶质的摩尔浓度溶质的
18、摩尔浓度;对于;对于稀溶液稀溶液可可取取0.93。 工艺过程设计过程基本方程工艺过程设计过程基本方程fpiBxKTcMKT(2)此式可以估算此式可以估算的近似值。的近似值。(3) 查表得到溶液的渗透压查表得到溶液的渗透压(4) 式中式中K0为系数为系数2410-5,T为温度为温度,cf为进料浓为进料浓度度mg/L。 工艺过程设计过程基本方程工艺过程设计过程基本方程410)/(714. 0)(LmgTDSMPafcTKPsi)273()(0工艺过程设计过程基本方程工艺过程设计过程基本方程(5) 对对NaCl水溶液,可以根据下式计算:水溶液,可以根据下式计算: 式中,式中,c为为NaCl溶液浓度,
19、溶液浓度,mg/L 4.2 水通量水通量Jw A为水的渗透性常数,为水的渗透性常数,NDP为净驱动压力。为净驱动压力。 pf和和pp分别为进料和产水压力,分别为进料和产水压力,p为进出口降,为进出口降,avg为平均渗透压。为平均渗透压。 Qp为产水量为产水量 10001000)273(10641. 2)(4cTcMPaavgpfpppNDP5 . 0pBppBpppppSAASNDPQ22工艺过程设计过程基本方程工艺过程设计过程基本方程4.3 盐通量盐通量Js B为盐的透过性常数,为盐的透过性常数,cs为膜两侧盐浓度差。为膜两侧盐浓度差。盐透量盐透量Qs S为膜面积。为膜面积。4.4 产水盐浓
20、度产水盐浓度cp 4.5 盐透过率盐透过率SP cfm为平均进料浓度。为平均进料浓度。 sssscBccBJ) (pbpsscccBScBSQ2wspJJc pcpsfmpQQccSP%100工艺过程设计过程基本方程工艺过程设计过程基本方程4.6 脱盐率脱盐率SR或或r 4.7 回收率回收率R和流量平衡和流量平衡 Qp为产水流速,为产水流速,Qf为进料流速,为进料流速,Qr为浓缩液流速为浓缩液流速 4.8 浓缩因子浓缩因子CF ppsfmpcQQccSPrSR111%100fpQQRprfQQQRCF11工艺过程设计过程基本方程工艺过程设计过程基本方程4.9 浓差极化因子浓差极化因子CPF c
21、a为膜表面盐浓度,为膜表面盐浓度,Kp为与元件构型有关的常数,为与元件构型有关的常数,Ri为膜元件回收率。对于为膜元件回收率。对于1m长的元件,长的元件,18的回收率时,的回收率时,CPF取取1.2。 4.10 膜元件产水量膜元件产水量Qp Qps为标准条件下的产水量,为标准条件下的产水量,TCF为温度校正因子,为温度校正因子,NDPf为现场条件下的净驱动力,为现场条件下的净驱动力,S为膜面积。为膜面积。 iipfavgppbaRRKQQKccCPF22expexpASNDPNDPNDPTCFQQafpsp工艺过程设计过程基本方程工艺过程设计过程基本方程4.11 产水盐度产水盐度cp SPs为
22、标准条件下的为标准条件下的SPc 4.12 系统平均渗透压系统平均渗透压 fssfpNDPNDPSPCFccRRfavg11ln5 工艺流程及其特征方程 反渗透系统是由基本单元膜组件以一定配置方式组装而成。装置的流程根据应用对象和规模大小,通常课采用连续式、部分循环式和循环式三种。 由反渗透的物料平衡和透(产)水、浓水的浓度与进水浓度的关系式,可导出各种流程的特征方程。 工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程段段和和级级概念的区分概念的区分 在膜分离工艺流程中常常会遇到在膜分离工艺流程中常常会遇到“段段”与与“级级”的的概念。概念。u 段段:指膜组件的:指膜组件的浓缩液(
23、浓水)浓缩液(浓水)流入到下一组膜组件流入到下一组膜组件进行处理。流经进行处理。流经n组膜组件,即称为组膜组件,即称为n段;段;u 级级:指膜组件的产水进入到下一组膜组件处理,:指膜组件的产水进入到下一组膜组件处理,透过透过液(产品水)液(产品水)经过经过n组膜组件处理,称为组膜组件处理,称为n级。级。 可以将可以将“段段”和和“级级”分别理解为对分别理解为对“浓水分级浓水分级”(分段分段)和对)和对“产水分级产水分级”(分级分级)。)。 工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程分段式工艺流程分段式工艺流程分级式工
24、艺流程分级式工艺流程5.1 5.1 连续式分段式(浓水分段)连续式分段式(浓水分段) (1) (1) 流程说明流程说明 将将前一段的浓水作为下一段的进水前一段的浓水作为下一段的进水,最后最后一段一段的浓水的浓水排放废弃排放废弃,而各段产水汇集利用。,而各段产水汇集利用。这一流程适合用于处理这一流程适合用于处理量大、回收率高量大、回收率高的应用的应用场合。通常用于场合。通常用于苦咸水的淡化苦咸水的淡化和和低盐度水低盐度水或或自自来水来水的净化。的净化。 工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程Q和和c分别表示流量和浓
25、度;下标分别表示流量和浓度;下标f、p和和r分别指进水、产水分别指进水、产水和浓水;下标和浓水;下标1,2,n为段号。为段号。 工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程(2) 特征方程特征方程装置及其各段的进水流量装置及其各段的进水流量Qf、Qfi通式:通式:10010)1 ()0;3 , 2 , 1 , 0; n,3 , 2 , 1()1 (ijjpijjffiRRQRnjiRQQ设工艺过程设计工艺流程及特征方程工艺过程设计工艺流程及特征方程通常采用两段式的流程,于是:通常采用两段式的流程,于是:式中,式中, 和和 分别为装置和第分别为装置和第j段段的回收率。的回收率。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 反渗透 工艺 过程 设计 精品 课件
限制150内