STATA面板数据模型实际操作命令讲解.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《STATA面板数据模型实际操作命令讲解.doc》由会员分享,可在线阅读,更多相关《STATA面板数据模型实际操作命令讲解.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、/STATA 面板数据模型估计命令一览表一、静态面板数据的STATA处理命令 固定效应模型 随机效应模型(一)数据处理输入数据tsset code year 该命令是将数据定义为“面板”形式xtdes 该命令是了解面板数据结构summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)gen lag_y=L.y / 产生一个滞后一期的新变量gen F_y=F.y / 产生一个超前项的新变量gen D_y=D.y / 产生一个一阶差分的新变量gen D2_y=D2.y / 产生一个二阶差分的新变量(二)模型的筛选和检验1、检验个体效应(混合效应还是固定效应)(原假
2、设:使用OLS混合模型)xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现)xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。可见,随机效应模型也优于混合OLS模型。3、检验固定
3、效应模型or随机效应模型 (检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (
4、或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。此时,需要采用工具变量法和是使用固定效应模型。(三)静态面板数据模型估计1、固定效应模型估计xtreg sq cpi unem g se5 ln,fe (如下图所示)其中选项fe表明我们采用的是固定效应模型,表头部分的前两行呈现了模型的估计方法、界面变量的名称(id)、以及估计中使用的样本数目和个体的数目。第3行到第5行列示了模型的拟合优度、分为组内、组间和样本总体三个层面,通常情况下,关注的是组内(within),第
5、6行和第7行分别列示了针对模型中所有非常数变量执行联合检验得到的F统计量和相应的P值,可以看出,参数整体上相当显著。需要注意的是,表中最后一行列示了检验固定效应是否显著的F统计量和相应的P值。显然,本例中固定效应非常显著。2、随机效应模型估计若假设本例的样本是从一个很大的母体中随机抽取的,且与解释变量均不相关,则我们可以将视为随机干扰项的一部分。此时,设定随机效应模型更为合适。xtreg sq cpi unem g se5 ln,re (如下图所示)3、时间固定效应(以上分析主要针对的是个体效应)如果希望进一步在上述模型中加入时间效应,可以采用时间虚拟变量来实现。首先,我们需要定义一下T-1个
6、时间虚拟变量。tab year ,gen(dumt) (tab命令用于列示变量year的组类别,选项gen(dumt)用于生产一个以dumt开头的年度虚拟变量) drop dumt1 (作用在于去掉第一个虚拟变量以避免完全共线性)若在固定效应模型中加入时间虚拟变量,则估计模型的命令为:xtreg sq cpi unem g se5 ln dumt*,fe(四)异方差和自相关检验1、异方差检验 (组间异方差)本节主要针对的是固定效应模型进行处理(1)检验原假设:同方差 需要检验模型中是否存在组间异方差,需要使用xttest3命令。qui xtreg sq cpi unem g se5 ln,fe
7、 xttest3显然,原假设被拒绝。此时,需要进一步以获得参数的GLS估计量,命令为xtgls:xtgls sq cpi unem g se5 ln,panels(heteroskedastic)其中,组间异方差通过panels()选项来设定。上述结果是采用两步获得,即,先采用OLS估计不考虑异方差的模型,进而利用其残差计算。,并最终得到FGLS估计量。2、序列相关检验对于T较大的面板而言,往往无法完全反映时序相关性,此时便可能存在序列相关,在多数情况下被设定为AR(1)过程。原假设:序列不存在相关性。(1) FE模型的序列相关检验对于固定效应模型,可以采用Wooldridge检验法,命令为x
8、tserial:xtserial sq cpi unem g se5 ln可以发现,这里的P=0.0000,我们可以在1%的显著性水平下爱拒绝不存在序列相关的原假设。考虑到样本,该检验的最后一步是用对进行OLS回归,因此,输入以下命令得到。检验该值是否显著异于-0.5,因为在原假设下(不相关),可见本例中不相等,拒绝原假设,说明存在序列相关。mat list e(b)(2) RE模型的序列相关检验对于RE模型,可以采用xttest1命令来执行检验:qui xtreg sq cpi unem g se5 ln dumt*,rexttest1这里汇报了4个统计量,分别用于检验RE模型中随机效应(单
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- stata 面板 数据模型 实际操作 命令 讲解 讲授
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内