【数学】高考-复习材料点拨-二项分布与超几何分布辨析.doc
《【数学】高考-复习材料点拨-二项分布与超几何分布辨析.doc》由会员分享,可在线阅读,更多相关《【数学】高考-复习材料点拨-二项分布与超几何分布辨析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、+二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决在实际应用中,理解并区分两个概率模型是至关重要的下面举例进行对比辨析例袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球求:(1)有放回抽样时,取到黑球的个数的分布列;(2)不放回抽样时,取到黑球的个数的分布列解:(1)有放回抽样时,取到的黑球数可能的取值为,1,2,3又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则;因此,的分布列为01232不放回抽样时,取到的黑球数可能的取值为,1,2,且有:;因此,的分布列为012辨析:通过此例
2、可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布. 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可
3、以利用这两个概率模型来解决。在实际应用中,理解并区分两个概率模型是至关重要的。下面举例进行对比辨析。1.有放回抽样:每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型。2.不放回抽样:取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型。因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样。所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的(特别注意:二项分布是在次独立重复试验的3个条件成立时应用的)。超几何分布和二项分布的区别:(1)超几何分布需要知道总体的
4、容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复)。练习题:1. 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球。求:(1)有放回抽样时,取到黑球的个数的分布列;(2)不放回抽样时,取到黑球的个数的分布列。2. (2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A类、B类、C类检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响(1)
5、求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以表示一天中需要调整设备的次数,求的分布列3. 今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以扰此计算出自己每天的碳排放量。例如:家居用电的碳排放量(千克)=耗电度数.785,汽车的碳排放量(千克)=油耗公升数0.785等。某班同学利用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。这二族人数占各自小区总人数的比例P数据如下:B小区低碳族非低碳族比例PA小区低碳族非低碳族比例P (I)如果甲、乙来自A小区,丙、丁来自B小区,求这
6、4人中恰有2人是低碳族的概率; (II)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列。如果2周后随机地从A小区中任选25个人,记表示25个人中低碳族人数,求4. 在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组选数学史与不等式选讲的有1人,选矩阵变换和坐标系与参数方程的有5人,第二小组选数学史与不等式选讲的有2人,选矩阵变换和坐标系与参数方程的有4人,现从第一、第二两小组各任选2人分析得分情况. ()求选出的4 人均为选矩阵变换和坐标系与参数方程的概率; ()设为选出的4个人中选数学史与不等式选讲的人数,求的分布列和数学期望5. 甲、乙两人参加2010年广州
7、亚运会青年志愿者的选拔打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选(1)求甲答对试题数的概率分布;(2)求甲、乙两人至少有一人入选的概率 正态分布和线性回归高考要求 1.了解正态分布的意义及主要性质 2.了解线性回归的方法和简单应用知识点归纳 1正态分布密度函数:,(0,-x)其中是圆周率;e是自然对数的底;x是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为 2正态分布)是由均值和标准差唯一决定的分布例1、下面给出三个正态总体的函数表示式,请找出其均值和标
8、准差(1),(-x+ (2),(-x+解: (1)0,1 (2)1,2 3正态曲线的性质:正态分布由参数、唯一确定,如果随机变量N(,2),根据定义有:=E,=D。正态曲线具有以下性质:(1)曲线在x轴的上方,与x轴不相交。(2)曲线关于直线x =对称。(3)曲线在x =时位于最高点。(4)当x 时,曲线下降。并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近。(5)当一定时,曲线的形状由确定。越大,曲线越“矮胖”,表示总体越分散;越小,曲线越“瘦高”,表示总体的分布越集中。五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4标准正态曲线:当=0、=
9、l时,正态总体称为标准正态总体,其相应的函数表示式是,(-x+)其相应的曲线称为标准正态曲线 标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N(0,1),是总体取值小于的概率,即 ,其中,图中阴影部分的面积表示为概率 只要有标准正态分布表即可查表解决.从图中不难发现:当时,;而当时,(0)=0.5 例2 设,且总体密度曲线的函数表达式为:,xR。(1)求,;(2)求的值。分析:根据表示正态曲线函数的结构特征,对照已知函数求出和。利用一般正态总体与标准正态总体N(0,1)概率间的关系
10、,将一般正态总体划归为标准正态总体来解决。解:(1)由于,根据一般正态分布的函数表达形式,可知=1,故XN(1,2)。(2) 。点评:在解决数学问题的过程中,将未知的,不熟悉的问题转化为已知的、熟悉的、已解决了的问题,是我们常用的手段与思考问题的出发点。通过本例我们还可以看出一般正态分布与标准正态分布间的内在关联。9相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 相关关系与函数关系的异同点如下:相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 高考 复习 温习 材料 点拨 二项分布 几何 分布 散布 辨析
限制150内