1431--提公因式法.ppt
《1431--提公因式法.ppt》由会员分享,可在线阅读,更多相关《1431--提公因式法.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、14.3 因式分解14.3.1 提公因式法整式的乘法整式的乘法计算下列各式计算下列各式: :x(x+1)= x(x+1)= (x+1)(x(x+1)(x1)= 1)= x x2 2 + x+ xx x2 21 1请把下列多项式写成整式的乘积的形式请把下列多项式写成整式的乘积的形式: :(1)x(1)x2 2+x =_;+x =_;(2)x(2)x2 21=_.1=_.x(x+1)x(x+1)(x+1)(x-1)(x+1)(x-1) 上面我们把一个多项式化成了几个上面我们把一个多项式化成了几个整式整式的的积积的形式的形式, ,像这样的式子变形叫做这个多项式的像这样的式子变形叫做这个多项式的因式分
2、解因式分解, ,也叫做把也叫做把这个多项式这个多项式分解因式分解因式. .整式的乘法与因式整式的乘法与因式分解有什么关系?分解有什么关系?x x2 2-1-1 因式分解因式分解整式乘法整式乘法(x+1)(x-1)(x+1)(x-1)因式分解与整式乘法是方向相反的变形因式分解与整式乘法是方向相反的变形. 由由p(a+b+c) = pa+pb+pcp(a+b+c) = pa+pb+pc可得可得: pa+pb+pc=p(a+b+c): pa+pb+pc=p(a+b+c)这样就把这样就把pa+pb+pcpa+pb+pc分解成两个因式乘积的形式分解成两个因式乘积的形式, ,其中一个其中一个因式是各项的公
3、因式因式是各项的公因式p,p,另一个因式另一个因式(a+b+c)(a+b+c)是是pa+pb+pcpa+pb+pc除除以以 p p所得的商所得的商. . 一般地,如果多项式的各项有公因式,可以把这个公一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法的形式,这种分解因式的方法叫做提公因式法. . 它的各项都有一个公共的因式它的各项都有一个公共的因式p p , ,我们把因式我们把因式 p p 叫做叫做这个多项式各项的这个多项式各项的 _ ._ .pa+pb+pc
4、pa+pb+pc 公因式公因式【例例1 1】把把8a8a3 3b b2 2 + 12ab + 12ab3 3c c 分解因式分解因式. .分析:分析:找公因式找公因式 1.1.系数的最大公约数系数的最大公约数 4 42.2.找相同字母找相同字母 a a3.3.相同字母的最低指数相同字母的最低指数 a a1 1b b2 2 公因式为:公因式为:4ab4ab2 2【解析解析】8a8a3 3b b2 2+12ab+12ab3 3c c =4ab=4ab2 2 2a2a2 2+4ab+4ab2 2 3bc3bc =4ab=4ab2 2(2a(2a2 2+3bc).+3bc).【例题例题】【解析解析】a
5、 a(x x3 3)+2b+2b(x x3 3) =(x=(x3)(a+2b).3)(a+2b).【例例2 2】把把a a(x x3 3)+2b+2b(x x3 3)分解因式)分解因式. .分析:分析:这个多项式整体而言可分为两大项,即这个多项式整体而言可分为两大项,即a(xa(x3)3)与与2b(x2b(x3)3),每项中都含有(,每项中都含有(x x3 3), ,因此可以把因此可以把(x(x3)3)作为公因式提出来作为公因式提出来. .把下列各式分解因式把下列各式分解因式: :1.a1.a(x xy y)+b+b(y yx x); ;分析:分析:虽然虽然a a(x xy)y)与与b(yb(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1431 公因式
限制150内