2022年高中数学必修选修全部知识点精华归纳总结 3.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年高中数学必修选修全部知识点精华归纳总结 3.pdf》由会员分享,可在线阅读,更多相关《2022年高中数学必修选修全部知识点精华归纳总结 3.pdf(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、引言1. 课程内容:?5?成:必修 1: ?(指 对 幂 )必修 2: ? 。必修 3:算法 统计 率。必修 4: ? ( ) ?换。必修 5: 形 列 不 式。? 必 ?的。? 统的 ?的 ? 列 不 式 形 ? 。不 的 ? 的 ?的 ? 不 ? 的 ?。? 算法 率 统计 ?。?4系列:系列 1:由 2? 成。选修 11: ? 。选修 12:统计 ? 系的? 复 框图系列 2:由 3? 成。选修 21: ? 。选修 22: ? 系的 ? 复 选修 23:计 ? 布列 统计 。系列 3:由 6? 成。选修 31: 选 ?。选修 32: ?密码。选修 33: 的 ? 。选修 34:对称 群。
2、选修 35: 式 ?。选修 36: ? 域 。系列 4:由 10? 成。选修 41: 选? 。选修 42: 换?。选修 43: 列 ?。选修 44: 系 ? 。选修 45:不 式选 ?。选修 46: ? 。选修 47: 选法 ?验 计 ?。选修 48:统 法 图? 。选修 49: ?。选修 410: ?布尔代 。2? :重点: 列 难点:?点:?: 的 ? 运算 条件 : ? 式?域 域 ? 图 指 指 ?对 对 ? 的 ? 列: 列的 ? 列 列 列 列的 ? : 系 ?式 式 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 38 页
3、 的?图 ? 的? : ? 运算 运算 ? 不 式: ? 不 式? 不 式的 ? 不 式的 ?法 对 不 ?式 不 式的 ? 的? : 的 ? 的? 系 的?系? : ? 的 ?系 的?:?棱柱 棱 列 率?: 列 ? 式 ? 率 统计?: 率 布列 期望 抽样 正态 布 : 的 ? 的 ? 复 :复 的 ? 运算必修 1? 知识 : ?概念1.1.1、 1、?素?叫做集合? :确定性、互异性、无序性2、?集合相等3、 常见 :正整数集合 ? :*N或N整数集合 :Z有理数集合 ? :Q实数集合 :R. 4、 ?方法:列举法、描述法 . 1.1.2、 ?本 系1、? A、B如果 A ?B?则
4、A ?B?子 集 记作BA. 2、 如果 BA?Bx 且Ax则 A ?B?真 子集 .记作: A B. 3、?叫做空集 .记作:. : ?.4、 如果 A ?n? 则 A?n221n 真 . 1.1.3、 ?本运算1、?A或 ?B?A ?B?.记作:BA. 2、?A 且 ?B?AB ?交集 . 记作:BA. 3、全集、补集 ?|,UC Ax xUxU且1.2.1、 概念?1、设 A、B? 如果 ?应 系f?A?xB?xf 应 ?BAf :A?B?函数记作:Axxfy,. 2、?: 定义域、对应关系、值域.如果 ? 且 应 ? 系? 则 ?函 数相等 . 1.2.2、 ?法1、?方法:解析法、图
5、象法、列表法. 1.3.1、 ?大(小)值1、 ? 方法:(1) 法:设2121,xxbaxx、,)(0)()(21baxfxfxf上 增 ;,)(0)()(21baxfxfxf上 减 .步骤:取值作差变形 号判断精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 38 页格 式 : 解 : 设baxx,21且21xx则 :21xfxf=(2)导 法: 设 )(xfy 区 内可导若0)(xf 则 增 )(xf;若0)(xf 则 减 )(xf. 1.3.2、奇偶 1、 如果 ?xf内 ?xxfxf? 偶 ?xf. 偶 ?y. 2、 如果 ?x
6、f内 ?xxfxf? 奇 ?xf. 奇 ? 点 ? . : 导 ?1、 点处)(xfy0 x 导 几 :点 处)(xfy0 x导曲 线处切)(xfy)(,(00 xfxP线 斜率)(0 xf 应 切线 方)(000 xxxfyy. 2、几 常见 导 C0;1)(nnnxx;xxcos)(sin; xxsin)(cos;aaaxxln)(;xxee)(;axxaln1)(log;xx1)(ln3、导 运算法则(1)()uvuv. (2)()uvuvuv. (3)2()(0)uu vuvvvv. 4、 ?导法则?( ( )yf g x导 ?( ),( )yf u ug x 导 ?系xuxyyu 导
7、 ?y x 导?y u 导?u x 乘积.解题步骤 :分层层层 导作积还 . 5、 值?(1) 值 : 值 ?0 x 点?)(xf)(0 xf则 ?)(0 xf)(xf 大值; 值 ?0 x 点?)(xf)(0 xf则 ?)(0 xf)(xf 小值. (2) 判别方法:如果 0 x 左侧)(xf0 右侧)(xf0 大)(0 xf值;如果 0 x 左侧)(xf0 右侧)(xf0 小)(0 xf值. 6、 ?值(1) 内 ?( )yf x( , )a b值( 大或 ? 小值)(2) 值?( )yf x点 ( ),( )f af b比较 其 大 ? 大? 值 小 ?小值 : 值 ? 值? 比较( )
8、; 值 ? 区 上 ? 值 ? 比较 () : 本 ?()2.1.1、 ?幂 运算1、如果axnx叫做an次方根 其 Nnn, 1. 2、 奇 ?naann; 偶 ?naann. 3、 我们 :mnmnaa1a10a-1-4-201-1-4-201(1) :R (2)值 : (0+)(3)过 点(01)x=0y=1 (4) R 上 增 ?(4) R上 减?(5)0,1xxa; 0,01xxa(5)0,01xxa; 0,1xxa精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 38 页1,0*mNnma;01naann;4、 运算 :Qsr
9、aaaasrsr,0;Qsraaarssr, 0;Qrbabaabrrr,0,0. 2.1.2、 ?其1、记住 :1, 0 aaayx2、 :2.2.1、 ?运 算1、 ?互化式:logxaaNxN;2、 式?:logaNaN. 3、 本 :01loga1log aa. 4、运算 : 0,0, 1,0NMaa :NMMNaaalogloglog;NMNMaaalogloglog;MnManaloglog. 5、换底公式:abbccalogloglog0, 1,0, 1,0bccaa. 6、重 公式:loglognmaambbn7、 倒 系:abbalog1log1,0,1,0bbaa. 2.2
10、.2、 ?其1、记住 :1, 0logaaxya2、 :2.3、幂 1、几 幂 ? : : 应 ?3.1.1、方 根 ? 点?1、方 根?0 xf?xfy 点?x 点?xfy. 2、 点 ?理:如果 ?xfy区 ba,上 ? 断?条曲线 且 0bfaf?xfy区 内 ?ba,点 bac,得0cf?c方 0 xf 根 . 1a10a2.51.50.5-0.5-1-1.5-2-2.5-10112.51.50.5-0.5-1-1.5-2-2.5-1011(1) :(0+)(2)值 :R (3)过 点(10)x=1y=0 (4) (0+)上 增 ?(4) (0+)上 减 ?(5)0log, 1xxa;
11、0log, 10 xxa(5)0log, 1xxa;0log, 10 xxa0a11y=axoyx0a11y=logaxoyx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 38 页3.1.2、 分法 ? 方?解1、 分法? .3.2.1、几 增?型3.2.2、 型 ?应 举例1、解 题 ? 常 方法: 点 ? 拟 后检验. 必修 2? 知识 : 几 ?1、 几 ?结常见 ?: 、 、 ;常见 ? :圆 、圆 、圆 、球 : 互? 其 ? 形 且? 形? 公 ? 互? 叫做 ? :? 底 ? 底 ? 分? 叫做 ?2、 几 ? 直 观
12、点? 形? 叫? 线 ? 点; ? 线 ? 叫? 线 ?3、 几 ? 积 ? 积圆 侧 积?;lrS2侧 圆 侧 积?:lrS侧 圆 侧 积?:lRlrS侧 积公式:hSV;hSV31;hSSSSV上上31 球 积?积:32344RVRS球球. :点、直线、 ?位置 系1、公理 1:如果 条直 ? 线上 点 ? 内? 条直? 线?内2、公理 2:过 条? 直线上 ? 点 且 ?3、公理 3:如果 ? 重? 公 ? 点们 ? 且 条? 过 点 公? 直线 4、公理 4:? 条直线 ? 条直线 ? .5、 理: 如果? 分别 应 ? 或互?补6、线线位置 ?系: 、 、异 7、 线 位置 ?系 :
13、直线 ? 内、直线 ? 、直线?8、 位置 ?系: 、 9、线 :判 : 条? 直线 ? 内 条? 直线 则 直线 ? ( 线线 ? 则线 ?) : 条直线 ? 则过 条直? 线? 线 ? 直线 ( 线 ?则线线 ?)10、 :判 : 内? 条 ? 直线 ?则 ? ( 线 ? 则 ?) :如果 ? 们 ? 线 ( ? 则线线 ?)11、线 垂直:如果 条直 ? 线垂直 ? 内 ? 条直?线 ? 条直线 ? 垂直?判 : 条直线 ? 内? 条 ? 直线 垂直?则 直线 ? 垂直? ( 线线垂? 直 则线 垂直?) :垂直 ? 条直线 ?12、 垂直: :? 如果 们 ? 直 ? 互 垂? 直判
14、:? 过? 条垂? 线 则 ? 垂直( 线 垂? 直 则 垂直?) : 互? 垂直 则 ? 内垂直 ? 线直线垂 ? 直? ( 垂? 直 则线 垂直?) :直线 方 ?1、 斜 斜?率:1212ta nxxyyk2、直线方 :精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 38 页点斜式:00 xxkyy斜 式:bkxy 点式:121121yyyyxxxx 距式:1xyab 式:0CByAx3、 直线:222111:,:bxkylbxkyl :212121/bbkkll;1l2l12kk;1l2l重 2121bbkk;12121kkll
15、. 4、 直线:0:, 0:22221111CyBxAlCyBxAl :1221122121/CBCBBABAll;1l2l1221BABA;1l2l重 12211221CBCBBABA;0212121BBAAll. 5、 点 距 ?公式:21221221yyxxPP6、点 直线距?公式:2200BACByAxd7、 线 ? 距 公式 ? :1l:01CByAx2l:02CByAx则2221BACCd :圆 方 1、圆 方 :标准方 :222rbyax其 圆 ?( , )a b 半径 r. 方 :022FEyDxyx. 其 圆 ?(,)22DE半径 22142rDEF. 2、直线 圆 位置 系
16、直线 圆0CByAx222)()(rbyax位置 系 : 0rd; 0 切rd; 0rd. 弦 公式:222drl2212121()4kxxx x3、 圆位置 ?系:21OOd :rRd; 切:rRd; :rRdrR;内切:rRd; 内 :rRd. 3、 点? 距 公式 ? :21221221221zzyyxxPP必修 3? 知识 :算法1、算法 ?言:自然 言、流 、 序 言;2、流 ?框: 框、 框? 、处理框、判断框、流 线精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 38 页? 方法?;3、算法 ?本结 :顺序结 、条件结 、
17、循环结 型循环结 直 型循环结 顺序结 ?:( 1)条件结 ?:IF - THEN - ELSE 格?式:( 2)IF - THEN 格 ?式:( 3)循环结 ?: 型(WHILE?型)循环结 ?:( 4)直 型(UNTIL?型)循环结 ?:( 5)4、 本算法 ?句: 句 ?格式: INPUT ? “提 内容” ;变量 句 ?格式: PRINT ? “提 内容” ; 达式 值 句 ?格式:变量 达式( “=” “”). 条件 句 ? 格式 ? :IFTHEN ELSE? 句 格?式:IFTHEN? 句 格? 式 :循环 句 ? 格式 ? : 型循环(WHILE?) 句 ?格式:直 型循环?(
18、U NTIL ?) 句 ?格 式:IF 条件THEN 句1 ELSE 句2 END IF IF 条件 THEN 句END IF ( 3)( 2)WHILE ?条件循环 WEND ( 4)DO 循环 LOOP UNTIL?条件 句n+1 句n 满足条件? 句1 句2 否满足条件? 句否满足条件?循环 否满足条件?循环 否精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 38 页算法案例: 法? 结果 ?0 ? 而得 ? 法 大? 公 步?骤如 :) : 较大 ?m 较小?n得 ?0S0R;) :若0R0 则nmn 大公?;若0R0 则 n
19、? 得?0R?1S1R;) :若1R 0则1Rm n 大公?; 若1R0 则 ?0R 得 ?1R?2S2R; 次 算直?至nR 0 得 ?1nR 大公 ? 减 ? 结果 减? 差 ?而得 减? 大? 公 步?骤如 :) :? ;判断 们 ? 否 偶 ?若 2 ;若 步?) : 较大 ? 减 较小 ? 较小? 得 ? 差比较 大 减? 小? 作 直 得 ? 则 ( ) ? 大公 ? 位制 制 化?k 制 ?k 取 法?k 制 化? 制 ? : 1、抽 方法: 抽? ( 较?少 )系 抽 ( 较? )分层抽 ( 差异? 显) :N? 抽?取n? 本? 抽?( 概率)均 Nn2、 分 ?估: : 率
20、分 ? 据详 率分 直?方分 直观 率分 ? 线 观 ? 分 ? : 分 ? 曲线 ?积1茎叶 :茎叶 ? 据较少? 据 分 ? 位 ?、众位 位 叶? 位 茎? 右侧 据 ? 小 大? 据?重3、 ?估 : 均 :nxxxxxn321;取值 ?nxxx,21率分别 nppp,21 则其 均 ?nnpxpxpx2211; : 率分 ? 算 均 ? 取 值?方差 标准? 差: 本 ?据nxxx,21方差:212)(1niixxns;标准差:21)(1niixxns :方差 标准? 差 小 本 ?据稳 均 ? 据 ? ;方差 标准? 差 据?稳 ?线 方?变量 ? 系: 系 ? 系;制作 点 ?
21、判断线 ?系线 方? :abxy( 小 乘法?)1221niiiniix ynxybxnxaybx :线 直? 线 过 点?),(yx :概率1、 件 ?其概率: 件: 验 ? 可 结? 果 大 ?字 母 ; 然 件、 可 件? 、 件 ?点; 件A ?概率:1)(0,)(APnmAP. 2、古典概型: 本 件: 次 验 ? 可? 本?结果;古典概型 ? 点: 本? 件 ? 限 ; 本 ? 件 可? 发生 古典概型概? 率 算公式? : 次 验 ? 可 本?件 n ? 件A? 了其 m ? 本 件? 则 件A 发?生概率nmAP)(. 3、几 概型:几 概型 ? 点: 本? 件 限? ;( 5
22、)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 38 页 本 ? 件 可? 发生 几 概型概? 率 算公式? : 测 测 DdAP)(;其 测 根? 据题 ? 线 ?、 、 积、 积 4、互斥 件: 可 ? 发生 ? 件 互?斥件;如果 件 ?nAAA,21? 互斥 件 则 件 ?nAAA,21 互斥 如果 件A ?B 互斥 件A ? +B 发生 概?率 件A ?B发生 概? 率 :)()()(BPAPBAP如果 件 ?nAAA,21 互斥 则 :)()()()(2121nnAPAPAPAAAP 件: 互斥 ? 件? 发生 则 ?件?
23、件 件 ? A 件记作A)(1)(, 1)()(APAPAPAP 件 ? 互斥 ? 件 互斥 件 ?件 必修 4? 知识 : 1.1.1、 1、 正角、负角、零角、象限角的概? 念. 2、?:Zkk ,2. 1.1.2、弧 制1、?半径 弧? 圆 ?叫做 1 弧? 度的角 . 2、rl. 3、弧长公式 :RRnl180. 4、扇形面积公 ? 式:lRRnS213602. 1.2.1、 ?1、 设 ? 位圆 ?点yxP, :xyxytan,cos,sin2、 设点 ?,A xy 上 ? 点 : (设22rxy)sinyrcosxrtanyxcotxy3、sincostan 限? 号 ? 线 ?法
24、. 弦线:MP; 弦线:OM; 切线:AT5、 殊 0, 30 , 45 , 60 ,90 , 180 , 270 等的 ? 值? .0 64322334322sincostan1.2.2、 ? 本 ?系式1、 平方关系 :1cossin22. 2、 商数关系 :cossintan. 3、 倒数关系:tancot11.3 、 ?诱 导公式( 概 括“?”Zk)1、 诱导公式一 ? :.tan2tan,cos2cos,sin2sinkkk(其 :Zk)2、 诱导公式二 ? :.tantan,coscos,sinsin3、诱导公式三 ? :TMAOPxy精选学习资料 - - - - - - - -
25、 - 名师归纳总结 - - - - - - -第 9 页,共 38 页.tantan,coscos,sinsin4、诱导公式四 ? :.tantan,coscos,sinsin5、诱导公式五 ? :.sin2cos,cos2sin6、诱导公式六 ? :.sin2cos,cos2sin1.4.1 、 弦、 弦 ?1、记住 弦、 弦 ? :2、 ? 弦? 、 弦 ? :定义域、值域、最大最小值? 、对称轴、对称中心、奇偶性、单调性、周期性. 3、 点法?作图.sinyx 上 ?0, 2 x 键点 :30 010-12022()() ()() () .1.4.3 、 切 ?1、记住 切 ? :y=t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学必修选修全部知识点精华归纳总结 2022 年高 数学 必修 选修 全部 知识点 精华 归纳 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内