【2020届】高考数学圆锥曲线专题复习:圆锥曲线椭圆的定义、性质及标准方程.doc
《【2020届】高考数学圆锥曲线专题复习:圆锥曲线椭圆的定义、性质及标准方程.doc》由会员分享,可在线阅读,更多相关《【2020届】高考数学圆锥曲线专题复习:圆锥曲线椭圆的定义、性质及标准方程.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、椭圆的定义、性质及标准方程1. 椭圆的定义:第一定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。第二定义:动点到定点的距离和它到定直线的距离之比等于常数,则动点的轨迹叫做椭圆。定点是椭圆的焦点,定直线叫做椭圆的准线,常数叫做椭圆的离心率。说明:若常数等于,则动点轨迹是线段。若常数小于,则动点轨迹不存在。2. 椭圆的标准方程、图形及几何性质:标准方程中心在原点,焦点在轴上中心在原点,焦点在轴上图形范围顶点对称轴轴、轴;长轴长,短轴长;焦点在长轴上轴、轴;长轴长,短轴长;焦点在长轴上焦点焦距离心率准线参数方程与普通方程的参数
2、方程为的参数方程为3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。焦半径公式:椭圆焦点在轴上时,设分别是椭圆的左、右焦点,是椭圆上任一点,则,。推导过程:由第二定义得(为点到左准线的距离),则;同理得。简记为:左“”右“”。由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。;若焦点在轴上,则为。有时为了运算方便,设。双曲线的定义、方程和性质知识要点:1 定义(1)第一定义:平面内到两定点F1、F2的距离之差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线。说明:|PF1|-|PF2|=2a(2a|F1F2|时无轨迹。设M是双曲线上任意一点,若M点在双曲线右边
3、一支上,则|MF1|MF2|,|MF1|-|MF2|=2a;若M在双曲线的左支上,则|MF1|1)的点的轨迹叫双曲线,定点叫焦点,定直线L叫相应的准线。2 双曲线的方程及几何性质标准方程图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)顶点A1(a,0),A2(-a,0) A1(0,a),A2(0,-a)对称轴实轴2a,虚轴2b,实轴在x轴上,c2=a2+b2实轴2a,虚轴2b,实轴在y轴上,c2=a2+b2离心率准线方程准线间距离为准线间距离为渐近线方程3 几个概念(1) 等轴双曲线:实、虚轴相等的双曲线。等轴双曲线的渐近线为y=x,离心率为。(2) 共轴双曲线:以已知
4、双曲线的实轴为虚轴,虚轴为实轴的双曲线叫原双曲线的共轴双曲线,例:的共轴双曲线是。 双曲线及其共轴双曲线有共同的渐近线。但有共同的渐近线的两双曲线,不一定是共轴双曲线;双曲线和它的共轴双曲线的四个焦点在同一个圆周上。抛物线标准方程与几何性质一、抛物线定义的理解平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,定点为抛物线的焦点,定直线为抛物线的准线。注: 定义可归结为“一动三定”:一个动点设为;一定点(即焦点);一定直线(即准线);一定值1(即动点到定点的距离与它到定直线的距离之比1) 定义中的隐含条件:焦点不在准线上。若在上,抛物线退化为过且垂直于的一条直线 圆锥曲线的统一定义:平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届 2020 高考 数学 圆锥曲线 专题 复习 椭圆 定义 性质 标准 方程
限制150内