【2020届】高考数学圆锥曲线专题复习:圆锥曲线中点弦问题.doc
《【2020届】高考数学圆锥曲线专题复习:圆锥曲线中点弦问题.doc》由会员分享,可在线阅读,更多相关《【2020届】高考数学圆锥曲线专题复习:圆锥曲线中点弦问题.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1 过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是,又M为AB的中点,所以,解得,故所求直线方程为。解法二:设直线与椭
2、圆的交点为A(),B(),M(2,1)为AB的中点,所以,又A、B两点在椭圆上,则,两式相减得,所以,即,故所求直线方程为。解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1),则另一个交点为B(4-),因为A、B两点在椭圆上,所以有,两式相减得,由于过A、B的直线只有一条,故所求直线方程为。二、求弦中点的轨迹方程问题例2 过椭圆上一点P(-8,0)作直线交椭圆于Q点,求PQ中点的轨迹方程。解法一:设弦PQ中点M(),弦端点P(),Q(),则有,两式相减得,又因为,所以,所以,而,故。化简可得 ()。解法二:设弦中点M(),Q(),由,可得,又因为Q在椭圆上,所以,即,所以PQ中
3、点M的轨迹方程为 ()。三、弦中点的坐标问题例3 求直线被抛物线截得线段的中点坐标。解:解法一:设直线与抛物线交于, ,其中点,由题意得,消去y得,即,所以,即中点坐标为。解法二:设直线与抛物线交于, ,其中点,由题意得,两式相减得,所以,所以,即,即中点坐标为。上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。下面我们看一个结论引理 设A、B是二次曲线C:上的两点,P为弦AB的中点,则。设A、B则(1) (2)得 即。(说明:当时,上面的结论就是过二次曲线C上的点P的切线斜率公式,即) 推论1 设圆的弦AB的中点为P(,则。(假设点P在圆上时,则过点P的切线斜率为) 推论2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届 2020 高考 数学 圆锥曲线 专题 复习 中点 问题
限制150内