9年级下册数学教案全章全册.doc
《9年级下册数学教案全章全册.doc》由会员分享,可在线阅读,更多相关《9年级下册数学教案全章全册.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十六章 二次函数 (三课时)二次函数yax2及其图象学习要求1熟练掌握二次函数的有关概念2熟练掌握二次函数yax2的性质和图象课堂学习检测一、填空题1形如_的函数叫做二次函数,其中_是目变量,a,b,c是_且_02函数yx2的图象叫做_,对称轴是_,顶点是_3抛物线yax2的顶点是_,对称轴是_当a0时,抛物线的开口向_;当a0时,抛物线的开口向_4当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_5当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_6写出
2、下列二次函数的a,b,c(1)a_,b_,c_(2)yx2a_,b_,c_(3)a_,b_,c_(4)a_,b_,c_7抛物线yax2,a越大则抛物线的开口就_,a越小则抛物线的开口就_8二次函数yax2的图象大致如下,请将图中抛物线字母的序号填入括号内(1)y2x2如图( ); (2)如图( );(3)yx2如图( ); (4)如图( ); (5)如图( ); (6)如图( )9已知函数不画图象,回答下列各题(1)开口方向_;(2)对称轴_;(3)顶点坐标_;(4)当x0时,y随x的增大而_;(5)当x_时,y0;(6)当x_时,函数y的最_值是_10画出y2x2的图象,并回答出抛物线的顶点
3、坐标、对称轴、增减性和最值综合、运用、诊断一、填空题11在下列函数中y2x2;y2x1;yx;yx2,回答:(1)_的图象是直线,_的图象是抛物线(2)函数_y随着x的增大而增大,函数_y随着x的增大而减小(3)函数_的图象关于y轴对称,函数_的图象关于原点对称(4)函数_有最大值为_,函数_有最小值为_12已知函数yax2bxc(a,b,c是常数)(1)若它是二次函数,则系数应满足条件_(2)若它是一次函数,则系数应满足条件_(3)若它是正比例函数,则系数应满足条件_13已知函数y(m23m)的图象是抛物线,则函数的解析式为_,抛物线的顶点坐标为_,对称轴方程为_,开口_14已知函数ym(m
4、2)x(1)若它是二次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限(2)若它是一次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限15已知函数ym,则当m_时它的图象是抛物线;当m_时,抛物线的开口向上;当m_时抛物线的开口向下二、选择题16下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )Ayx(x1)Bxy1Cy2x22(x1)2D17在二次函数y3x2;中,图象在同一水平线上的开口大小顺序用题号表示应该为( )ABCD18对于抛物线yax2,下列说法中正确的是( )Aa越大,抛物线开口越大Ba越小,抛物线开口越大Ca越大,抛物线
5、开口越大Da越小,抛物线开口越大19下列说法中错误的是( )A在函数yx2中,当x0时y有最大值0B在函数y2x2中,当x0时y随x的增大而增大C抛物线y2x2,yx2,中,抛物线y2x2的开口最小,抛物线yx2的开口最大D不论a是正数还是负数,抛物线yax2的顶点都是坐标原点三、解答题20函数y(m3)为二次函数(1)若其图象开口向上,求函数关系式;(2)若当x0时,y随x的增大而减小,求函数的关系式,并画出函数的图象拓展、探究、思考21抛物线yax2与直线y2x3交于点A(1,b)(1)求a,b的值;(2)求抛物线yax2与直线y2的两个交点B,C的坐标(B点在C点右侧);(3)求OBC的
6、面积22已知抛物线yax2经过点A(2,1)(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求OAB的面积;(4)抛物线上是否存在点C,使ABC的面积等于OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由二次函数ya(x-h)2的图象与性质(3课时)一、阅读课本:P1011二、学习目标:1会画二次函数ya(x-h)2的图象;2掌握二次函数ya(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y(x1)2,y(x1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性先列表:x-432101234y(x1)2y(x1)2描点并画图
7、1观察图象,填表:函数开口方向顶点对称轴最值增减性y(x1)2y(x1)22请在图上把抛物线yx2也画上去(草图) 抛物线y(x1)2 ,yx2,y(x1)2的形状大小_把抛物线yx2向左平移_个单位,就得到抛物线y(x1)2 ;把抛物线yx2向右平移_个单位,就得到抛物线y(x1)2 四、整理知识点 1yax2yax2kya (x-h)2开口方向顶点对称轴最值增减性(对称轴左侧)2对于二次函数的图象,只要a相等,则它们的形状_,只是_不同五、课堂训练1填表开口方向顶点对称轴最值对称轴右侧的增减性yx2y5 (x3)2y3 (x3)22抛物线y4 (x2)2与y轴的交点坐标是_,与x轴的交点坐
8、标为_3把抛物线y3x2向右平移4个单位后,得到的抛物线的表达式为_ 把抛物线y3x2向左平移6个单位后,得到的抛物线的表达式为_4将抛物线y(x1)x2向右平移2个单位后,得到的抛物线解析式为_5写出一个顶点是(5,0),形状、开口方向与抛物线y2x2都相同的二次函数解析式 _六、目标检测1抛物线y2 (x3)2的开口_;顶点坐标为_;对称轴是_;当x3时,y_;当x3时,y有_值是_2抛物线ym (xn)2向左平移2个单位后,得到的函数关系式是y4 (x4)2,则 m_,n_3若将抛物线y2x21向下平移2个单位后,得到的抛物线解析式为_4若抛物线ym (x1)2过点(1,4),则m_二次
9、函数ya(xh)2k及其图象(3课时)学习要求掌握并灵活应用二次函数yax2k,ya(xh)2,ya(xh)2k的性质及图象课堂学习检测一、填空题1已知a0,(1)抛物线yax2的顶点坐标为_,对称轴为_(2)抛物线yax2c的顶点坐标为_,对称轴为_(3)抛物线ya(xm)2的顶点坐标为_,对称轴为_2若函数是二次函数,则m_3抛物线y2x2的顶点,坐标为_,对称轴是_当x_时,y随x增大而减小;当x_时,y随x增大而增大;当x_时,y有最_值是_4抛物线y2x2的开口方向是_,它的形状与y2x2的形状_,它的顶点坐标是_,对称轴是_5抛物线y2x23的顶点坐标为_,对称轴为_当x_时,y随
10、x的增大而减小;当x_时,y有最_值是_,它可以由抛物线y2x2向_平移_个单位得到6抛物线y3(x2)2的开口方向是_,顶点坐标为_,对称轴是_当x_时,y随x的增大而增大;当x_时,y有最_值是_,它可以由抛物线y3x2向_平移_个单位得到二、选择题7要得到抛物线,可将抛物线( )A向上平移4个单位B向下平移4个单位C向右平移4个单位D向左平移4个单位8下列各组抛物线中能够互相平移而彼此得到对方的是( )Ay2x2与y3x2 B与Cy2x2与yx22Dyx2与yx229顶点为(5,0),且开口方向、形状与函数的图象相同的抛物线是( )A BCD三、解答题10在同一坐标系中画出函数和的图象,
11、并说明y1,y2的图象与函数的图象的关系11在同一坐标系中,画出函数y12x2,y22(x2)2与y32(x2)2的图象,并说明y2,y3的图象与y12x2的图象的关系综合、运用、诊断一、填空题12二次函数ya(xh)2k(a0)的顶点坐标是_,对称轴是_,当x_时,y有最值_;当a0时,若x_时,y随x增大而减小13填表解析式开口方向顶点坐标对称轴y(x2)23y(x3)22y3(x2)2y3x2214抛物线有最_点,其坐标是_当x_时,y的最_值是_;当x_时,y随x增大而增大15将抛物线向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为_二、选择题16一抛物线和抛物线y2x2的
12、形状、开口方向完全相同,顶点坐标是(1,3),则该抛物线的解析式为( )Ay2(x1)23By2(x1)23Cy(2x1)23Dy(2x1)2317要得到y2(x2)23的图象,需将抛物线y2x2作如下平移( )A向右平移2个单位,再向上平移3个单位B向右平移2个单位,再向下平移3个单位C向左平移2个单位,再向上平移3个单位D向左平移2个单位,再向下平移3个单位三、解答题18将下列函数配成ya(xh)2k的形式,并求顶点坐标、对称轴及最值(1)yx26x10(2)y2x25x7(3)y3x22x(4)y3x26x2(5)y1005x2(6)y(x2)(2x1)拓展、探究、思考19把二次函数ya
13、(xh)2k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象(1)试确定a,h,k的值;(2)指出二次函数ya(xh)2k的开口方向、对称轴和顶点坐标二次函数yax2bxc及其图象(2课时)学习要求掌握并灵活应用二次函数yax2bxc的性质及其图象课堂学习检测一、填空题1把二次函数yax2bxc(a0)配方成ya(xh)2k形式为_,顶点坐标是_,对称轴是直线_当x_时,y最值_;当a0时,x_时,y随x增大而减小;x_时,y随x增大而增大2抛物线y2x23x5的顶点坐标为_当x_时,y有最_值是_,与x轴的交点是_,与y轴的交点是_,当x_时,y随x增大而减小,当x_时,y随
14、x增大而增大3抛物线y32xx2的顶点坐标是_,它与x轴的交点坐标是_,与y轴的交点坐标是_4把二次函数yx24x5配方成ya(xh)2k的形式,得_,这个函数的图象有最_点,这个点的坐标为_5已知二次函数yx24x3,当x_时,函数y有最值_,当x_时,函数y随x的增大而增大,当x_时,y06抛物线yax2bxc与y32x2的形状完全相同,只是位置不同,则a_7抛物线y2x2先向_平移_个单位就得到抛物线y2(x3)2,再向_平移_个单位就得到抛物线y2(x3)24二、选择题8下列函数中y3x1;y4x23x;y52x2,是二次函数的有( )ABCD9抛物线y3x24的开口方向和顶点坐标分别
15、是( )A向下,(0,4)B向下,(0,4)C向上,(0,4)D向上,(0,4)10抛物线的顶点坐标是( )ABCD(1,0)11二次函数yax2x1的图象必过点( )A(0,a)B(1,a)C(1,a)D(0,a)三、解答题12已知二次函数y2x24x6(1)将其化成ya(xh)2k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标;(4)画出函数图象;(5)说明其图象与抛物线yx2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y0,y0,y0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,4x0;(10)求函数图象与
16、两坐标轴交点所围成的三角形面积二次函数yax2bxc的性质巩固练习(2课时)一、复习知识点:第6课中“理一理知识点”的内容二、学习目标:1懂得求二次函数yax2bxc与x轴、y轴的交点的方法;2知道二次函数中a,b,c以及b24ac对图象的影响三、基本知识练习1求二次函数yx23x4与y轴的交点坐标为_,与x轴的交点坐标_2二次函数yx23x4的顶点坐标为_,对称轴为_3一元二次方程x23x40的根的判别式_4二次函数yx2bx过点(1,4),则b_5一元二次方程yax2bxc(a0),0时,一元二次方程有_,0时,一元二次方程有_,0时,一元二次方程_四、知识点应用 1求二次函数yax2bx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学教案 全章全册
限制150内