高中数学排列组合问题方法总结(共4页).doc
《高中数学排列组合问题方法总结(共4页).doc》由会员分享,可在线阅读,更多相关《高中数学排列组合问题方法总结(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学排列组合方法总结1.分组(堆)问题 分组(堆)问题的六个模型:无序不等分;无序等分;无序局部等分;(有序不等分;有序等分;有序局部等分.)处理问题的原则:若干个不同的元素“等分”为 个堆,要将选取出每一个堆的组合数的乘积除以m! 若干个不同的元素局部“等分”有 个均等堆,要将选取出每一个堆的组合数的乘积除以m! 非均分堆问题,只要按比例取出分完再用乘法原理作积.要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.1.分组(堆)问题例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?解:要完成发包这件
2、事,可以分为两个步骤: 将四项工程分为三“堆”,有 种分法;再将分好的三“堆”依次给三个工程队,有3!6种给法.共有6636种不同的发包方式.2.插空法:解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. 例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?解:分两步进行:第1步,把除甲乙外的一般人排列:第2步,将甲乙分别插入到不同的间隙或两端中(插孔):几个元素不能相邻时,先排一般元素,再让特殊元素插孔.3.捆绑法相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.例3 . 6人排成一排.甲、乙两人
3、必须相邻,有多少种不的排法?解:(1)分两步进行: 甲 乙第一步,把甲乙排列(捆绑):第二步,甲乙两个人的梱看作一个元素与其它的排队: 几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.4.消序法(留空法)几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.例4.5个人站成一排,甲总站在乙的右侧的有多少种站法?解法1:将5个人依次站成一排,有 种站法,然后再消去甲乙之间的顺序数 甲总站在乙的右侧的有站法总数为 解法2:先让甲乙之外的三人从5个位置选出3个站好,有 种站法,留下的两个位置自然给甲乙有1种站法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 排列组合 问题 方法 总结
限制150内