【2020届】高考数学圆锥曲线专题复习:圆锥曲线与向量综合题.doc
《【2020届】高考数学圆锥曲线专题复习:圆锥曲线与向量综合题.doc》由会员分享,可在线阅读,更多相关《【2020届】高考数学圆锥曲线专题复习:圆锥曲线与向量综合题.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆锥曲线与平面向量考纲透析考试大纲:椭圆、双曲线、抛物线的定义、标准方程、几何性质以及直线与圆锥曲线的位置关系,平面向量的概念,向量的坐标运算. 圆锥曲线与平面向量的综合. 新题型分类例析1.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.解:()设双曲线方程为 由已知得故双曲线C的方程为()将 由直线l与双曲线交于不同的两点得即 设,则而于是 由、得 故k的取值范围为3.设,为直角坐标平面内轴、轴正方向上的单位向量,若,且.()求点的轨迹C的方程;()若A、B为轨迹C上的两
2、点,满足,其中M(0,),求线段AB的长.启思4.已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.()求椭圆的离心率;()设M为椭圆上任意一点,且,证明为定值.解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为则直线AB的方程为,代入,化简得.令A(),B),则由与共线,得又,即,所以,故离心率(II)证明:(1)知,所以椭圆可化为设,由已知得 在椭圆上,即由(1)知变式新题型3 抛物线的顶点在原点,焦点在x轴上,准线l与x轴相交于点A(1,0),过点A
3、的直线与抛物线相交于P、Q两点.(1)求抛物线的方程;(2)若=0,求直线PQ的方程;(3)设=(1),点P关于x轴的对称点为M,证明:=-.6.已知在平面直角坐标系中,向量,且 .(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.7.已知,点在轴上,点在轴的正半轴,点在直线上,且满足,.()当点在轴上移动时,求动点的轨迹方程;()过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.8. 已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且 ()当点P在圆上运动时,求点Q的轨迹方程; (
4、)若直线与()中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求FOH的面积 已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、三点()求椭圆的方程;()若直线:()与椭圆交于、两点,证明直线与直线的交点在直线上10如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点。 ()设点P分有向线段所成的比为,证明()设直线AB的方程是x2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。10. 已知平面上一定点和一定直线为该平面上一动点,作垂足为,.(1) 问点在什么曲线上?并求出该曲线方程;(2) 点是
5、坐标原点,两点在点的轨迹上,若求的取值范围11. 如图,已知E、F为平面上的两个定点 ,且,(G为动点,P是HP和GF的交点)(1)建立适当的平面直角坐标系求出点的轨迹方程;(2)若点的轨迹上存在两个不同的点、,且线段的中垂线与(或的延长线)相交于一点,则(为的中点)12已知动圆过定点,且与直线相切.(1) 求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.13已知若动点P满足 (1)求动点P的轨迹方C的方程; (2)设Q是曲线C上任意一点,求Q到直线的距离的最小值.19如图,直角梯形ABCD中,ADBC,AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届 2020 高考 数学 圆锥曲线 专题 复习 向量 综合
限制150内