【2020届】高考数学圆锥曲线专题复习:圆锥曲线定比弦的存在定理.doc
《【2020届】高考数学圆锥曲线专题复习:圆锥曲线定比弦的存在定理.doc》由会员分享,可在线阅读,更多相关《【2020届】高考数学圆锥曲线专题复习:圆锥曲线定比弦的存在定理.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆锥曲线定比弦的存在定理摘要 本文研究了圆锥曲线中过定点并以此点为定比分点的弦的存在问题,给出了圆锥曲线中定比弦存在的较为一般的判定定理。关键词 圆锥曲线 定点 中点弦 定比弦The Existence Theroem of Fixed proportionNypothenuse in Conical CuryeCao Houliang(Class 9702,Department of Mathematics,Hubei Normal University)AbstractIn this paper,we carry out a research into the existence prob
2、lem of acertain hypothenuse which passes through a fixed point and has it as a fixed-proportion point,in conical curve give out several common theorems to judge the existence of fixed-proportion hupothenuse in conical curve.Key Word:conical curve;fixed point;center-point hypothenuse;fixed-proportion
3、 hypothenuse首先给出如下定义:定义 设P点为定点,T为圆锥曲线,AB是它的弦,若AB所在直线过P点,且被P点所分成的有向线段代数长之比(定值),则AB便叫做T的定比弦。当时,定比弦即是中点弦。本文研究定比弦的存在定理,对此,我们有定理一 椭圆存在以P()(x02+ y020)为分点,为定比的定比弦的充要条件是:(1)当0时,()b2x02+a2y02a2b2;(2)当=0时,b2x02+a2y02=a2b2()(3)当0时(-1),b2x02+a2y02()证明:设A(x,y),则B(),则有b2x2+a2y2=a2b2b2(1+)x0-x2+a2(1+)y0-y2=a2b22(*
4、)两式相减,得b2(1+)2x02-2b2(1+)x0+a2(1+)2y02-2a2(1+)y0y-a2b2(2-1)=0(*)当y00时,y=代入,并化简得到:()假设弦AB存在,则,所以上述方程有实根,从而0,对其化简整理,得:0解此不等式,即得:(1)当0时,()b2x02+a2y02a2b2;(2)当=0时,b2x02+a2y02=a2b2(3)当0时(-1),b2x02+a2y02()当=0时,这时P点为(x0,0).由(*)得:x=又因,即即,由此得(1)当0时,()x02a2(2)当=0时, x02=a2(3)当0时,x02()这个结论就是()式中取的情形,故不管是否零,()式总
5、成立。()反过来,若()式成立,由于以上的推导过程可逆,因而以P(x0,y0)为分点,而以为定比的定比弦必存在。由于当x0=0时,y0=0时P为椭圆的中心,此时相应弦只能是中点弦,不能随的改变而改变,且中点弦亦不唯一,故P点不能为椭圆的中心。综上所述,可知定理一定成立。定理二 抛物线y2=2px(p0)存在以(x0,y0)为分点,以为定比的定比弦的充要条件是:(1)0(-1)时,()0;(2)=0时, () 证明:设A(x,y),则B(),得 (* *)两式相减得到: (* *)当y00时,y=代入y2=2px,得()设弦AB存在,则xR,方程有实根,0,对此化简即得:(1)0(-1),(y0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届 2020 高考 数学 圆锥曲线 专题 复习 存在 定理
限制150内