函数的单调性.doc
《函数的单调性.doc》由会员分享,可在线阅读,更多相关《函数的单调性.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、*.函数的单调性一、 函数单调性的的判断方法除了用差分法(又称定义法)判断函数的单调性外,常用的方法还是有以下几种:1.直接法直接法就是利用我们熟知的正比例函数、一次函数、反比例函数的单调性,直接判断函数的单调性,并写出它们的单调区间,熟记以下几种函数的单调性:(1)正比例函数:当时,函数在定义域上是增函数;当时,函数在定义域上是减函数.(2)反比例函数:当时,函数的单调递减区间是,不存在单调递增区间;当时,函数的单调递增区间是,不存在单调递增区间.(3)一次函数:当时,函数在定义域上是增函数;当时,函数在定义域上是减函数.(4)二次函数:当时,函数的图像开口向上,单调递减区间是,单调递增区间
2、是;当时,函数的图像开口向下,单调递增区间是,单调递减区间是.注意:在定义域上是增函数,其图像如右图:2.图像法画出函数图象,根据其图像的上升或下降趋势判断函数的单调性.3.运算性质法(1)函数,当时有相同的单调性,当时有相反的单调性;如函数与的单调性相反,函数与的单调性相同;(2)当函数恒为正(或恒为负)时与有相反的单调性,如:函数是递增函数,则在区间是递减函数;(3)若,则与具有相同的单调性,如:函数,在定义域上,且是上的递减函数,是上的递增函数,所以函数是上的递减函数,是上的递增函数;(4)若,的单调性相同,则的单调性与,的单调性相同.如,令,即,因为函数在上单调递减,的单调递减区间是,
3、所以函数的单调递减区间是;(5) 若,的单调性相反,则的单调性与的相同.因为与的单调性相同,所以的单调性与的相同.二、抽象函数单调性的判定没有具体函数解析式的函数,我们称为抽象函数,判断抽象函数单调性是一类重要的题型,其解法采用差分法.实例1 已知定义在上的函数对任意,恒有,且当时,判断在上的单调性.解 设,则.,所以函数在上的单调递减.二、 复合函数单调性的判定方法求复合函数的单调性的步骤:(1) 求出函数的定义域;(2) 明确构成复合函数的简单函数(所谓简单函数即我们熟知其单调性的函数):;(3) 确定简单函数的单调性;(4) 若这两个函数同增或同减(单调性相同),则为增函数;若这两个函数
4、一增一减(单调性相异)则为减函数简记为“同增异减”.如下表所示:函数复合函数 单调性增增增减增减增减减减减增实例2 求函数在定义域上的单调区间解:由解析式得,即函数的定义域为.令,则.是增函数,而在上是减函数,在上是增函数,函数的递增区间为,递减区间为.三、 单调性的应用1. 用函数的单调性比较大小利用函数的单调性及自变量的大小可以比较两个函数值的大小,即已知函数在定义域的某个区间上为增函数,若对区间内的任意两个值且,则.减函数也有类似的性质.示例3 已知函数在上是减函数,试比较与的大小.解:,与都在区间内.又在区间上是减函数,注意:解答这类型的题目首先要判断函数的自变量是否在所给区间内.示例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性
限制150内