分解因式全部方法.doc
《分解因式全部方法.doc》由会员分享,可在线阅读,更多相关《分解因式全部方法.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、+分解因式全部方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x2+x=-x(3x-1)) 编辑本段基本方法 提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数
2、都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a2+1/2变成2(a2+1/4)不叫提公因式 公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式
3、法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a22abb2(ab)2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a3+b3=(a+b)(a2-ab+b2); 立方差公式:a3-b3=(a-b)(a2+ab+b2); 完全立方公式:a33a2b3ab2b3=(ab)3 公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) 例如:a2 +4ab+4b2 =(a+2b)2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2
4、.分解因式技巧掌握: 等式左边必须是多项式; 分解因式的结果必须是以乘积的形式表示; 每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; 分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: 第一步找公因式可按照确定公因式的方法先确定系数在确定字母; 第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; 提
5、完公因式后,另一因式的项数与原多项式的项数相同。 编辑本段竞赛用到的方法 分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x
6、+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+ (x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 十字相乘法 这种方法有两种情况。 x2+(p+q)x+pq型的式子的因式分
7、解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) kx2+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx2+mx+n=(ax+b)(cx+d) 图示如下: c d 例如:因为 1 -3 7 2 -37=-21,12=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3) 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 拆项、添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(
8、或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分
9、解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x+3x-40 =x+3x+2.25-42.25 =(x+1.5)-(6.5) =(x+8)(x-5) 应用因式定理 对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a 例如:f(x)=x+5x+6,f(-2)=0,则可确定x+2是x+5x+6的一个因式。(事实上,x+5x+6=(x+2)(x+3) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系
10、数,c为常数项,则有a为c/b约数 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。 注意:换元后勿忘还元. 例如在分解(x+x+1)(x+x+2)-12时,可以令y=x+x,则 原式=(y+1)(y+2)-12 =y+3y+2-12=y+3y-10 =(y+5)(y-2) =(x+x+5)(x+x-2) =(x+x+5)(x+2)(x-1) 也可以参看右图。 求根法 令多项式f(x)=0,求出其根为x1,x2,x3,xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)(x-xn) 例如在分解2x4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分解 因式 全部 全体 整个 方法 法子
限制150内