带电粒子在有界磁场中运动的临界问答题.doc
《带电粒子在有界磁场中运动的临界问答题.doc》由会员分享,可在线阅读,更多相关《带电粒子在有界磁场中运动的临界问答题.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m、电量q确定)在有界磁场中运动时,涉及的可能变化的参量有入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(),并可归并为6大类型。类型已知参量类型一入射点、入射方向;出射点、出射方向类型二入射点、速度大小;出
2、射点、速度大小类型三入射点、出射点类型四入射方向、出射方向类型五入射方向、速度大小;出射方向、速度大小;类型六入射点、出射方向;出射点,入射方向入射点入射方向入射速度大小出射点出射方向所有这些问题,其通用解法是:第一步,找准轨迹圆圆心可能的位置,第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定)这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。【例1】如图所示,长为L的水平极板间有垂直于纸面向内的匀强磁
3、场,磁感应强度为B,板间距离也为L,板不带电现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是A使粒子的速度vC使粒子的速度vD使粒子的速度v时粒子能从右边穿出粒子擦着上板从左边穿出时,圆心在O点,有 r2由 r2 ,得 v2 ,所以v时粒子能从左边穿出类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上所谓“圆心圆”,是指以入射点为圆心,以为半径的圆。【例2】如图所示,在0xa、0y范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小
4、为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;(2)速度方向与y轴正方向夹角的正弦。【分析】本题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O,入射点O到任一圆心的距离均为r,故所有轨迹圆的圆心均在一个“圆心圆”以入射点O为圆心、r为半径的圆周上(如图甲
5、)。考虑到粒子是向右偏转,我们从最左边的轨迹圆画起取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹对应弦长大于轨迹对应弦长半径一定、圆心角都较小时(均小于180),弦长越长,圆心角越大,粒子在磁场中运动时间越长故轨迹对应圆心角为90。图乙图甲【解答】设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力得:OyxCRDAaPv,解得: 当a/2Ra时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,t=T/4时,OCA=/2设最后离开磁场的粒子的发射方向与y轴正方向的夹
6、角为,由几何关系得:,且 解得:这类题作图要讲一个小技巧按粒子偏转方向移动圆心作图。【练习2】如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于ad边中点O的粒子源在abcd平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od边的夹角分布在0180范围内。已知沿Od方向发射的粒子在t=t0时刻刚好从磁场边界cd上的p点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L,粒子重力不计,求:(1)粒子的比荷q/m;(2)假设粒子源发射的粒子在0180范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;O3p
7、abcdOpabcdOO1O2O4(3)从粒子发射到全部粒子离开磁场所用的时间。pabcdO 图甲 图乙【分析】以L为半径、O点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开始画起(轨迹),在“圆心圆”取不同点为圆心、以L为半径作出一系列圆(如图乙);其中轨迹与轨迹对称,在磁场中运动时间相同;轨迹并不经过c点,轨迹对应弦长短于轨迹对应弦长即沿轨迹运动的粒子最后离开磁场。【解答】(1)初速度沿Od方向发射的粒子在磁场中运动的轨迹如图,其圆心为n,由几何关系有: , 粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得,得 (2)依题意,同一时刻仍在磁场中的粒子到O点距离相
8、等。在t0时刻仍在磁场中的粒子应位于以O为园心,Op为半径的弧pw上。由图知 此时刻仍在磁场中的粒子数与总粒子数之比为5/6 (3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b点相交,设此粒子运动轨迹对应的圆心角为,则 在磁场中运动的最长时间 所以从粒子发射到全部离开所用时间为。 类型三:已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向这类问题的特点是:所有轨迹圆圆心均在入射点和出射点连线的中垂线上。【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向外,大小为B,沿x轴放置一个垂直于xOy平面的较大的荧光屏,P点位于荧光屏上,在y轴上的A点放置
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 磁场 运动 临界 问答题
限制150内