新课标高中数学人教A版必修五 1.2应用举例(三) 教案.doc
《新课标高中数学人教A版必修五 1.2应用举例(三) 教案.doc》由会员分享,可在线阅读,更多相关《新课标高中数学人教A版必修五 1.2应用举例(三) 教案.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2解三角形应用举例 第三课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。二、教学重点、难点重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系难点:灵活运用正弦定理和余弦定理解关于角度的问题三、教学过程.课题导入创设情境提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会
2、遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。.讲授新课范例讲解例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)学生看图思考并讲述解题思路分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。解:在ABC中,ABC=
3、180- 75+ 32=137,根据余弦定理,AC= = 113.15根据正弦定理, = sinCAB = = 0.3255, 所以 CAB =19.0, 75- CAB =56.0答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。解法一:(用正弦定理求解)由已知可得在ACD中, AC=BC=30, AD=DC=10, ADC =180-4, = 。 因为 sin4=2sin2cos2cos2=,得 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课标高中数学人教A版必修五 1.2应用举例三 教案 新课 标高 学人 必修 1.2 应用 举例
限制150内