分类讨论思想在初级中学数学解题中的应用.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《分类讨论思想在初级中学数学解题中的应用.doc》由会员分享,可在线阅读,更多相关《分类讨论思想在初级中学数学解题中的应用.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、分类讨论思想在初中数学解题中的应用李焕焕(合肥市永和学校 ) 摘 要:在解数学问题时,应用分类讨论思想,通过正确分类,可以使复杂的问题得到清晰,完整,严密的解答 关键词:分类讨论思想;初中数学;正确分类;解题;应用 Abstract: In solutions mathematics problem Shi, application classification discussion thought, through correctly classification, can makes complex of problem get clear, full, closely of answer
2、s. 引 言:数学思想方法是人们对数学理论和内容的本质认识,是数学的精髓和灵魂,因此在数学教学中注重数学思想方法的渗透是极其重要的。初中数学中常见的思想方法有函数与方程的思想方法,化归转化与化归的思想方法,分类讨论的思想方法,数形结合的思想方法,整体的思想方法等。、分类讨论思想1. 含义及意义在研究和解答某些数学问题时,会遇到许多种不同的情况,有些问题无法用同一种形式解决,有些问题的结论不是唯一确定的。因此,我们需要把所要研究的问题根据题目的特点和要求,选定一个标准,将其划分成几个能用不同形式解决的小问题,然后再将这些小问题一一解决,最后综合各类结果得到整个问题的答案。这就是我们常说的分类讨论
3、法,而运用这种方法的思想就是分类讨论思想。分类讨论思想,是一种重要的数学思想,也是一种逻辑方法,同时又是一种重要的解题策略分类讨论思想具有较高的逻辑性及很强的综合性,有利于提高学生对学习数学的兴趣,培养学生思维的条理性,缜密性,科学性,所以在数学解题中占有重要的位置2. 分类讨论的要求、原则及其意义分类讨论的要求:正确应用分类讨论思想,是完整解题的基础应用分类讨论思想解决问题,必须保证分类科学,统一,不重复,不遗漏,在此基础上减少分类,简化分类讨论过程 为了分类的正确性,分类讨论必需遵循一定的原则进行,在初中阶段,我们经常用到的有以下四大原则: (1)同一性原则 分类应按照同一标准进行,即每次
4、分类不能同时使用几个不同的分类根据(2) 互斥性原则 分类后的每个子项应当互不相容,即做到各个子项相互排斥,分类后不能有些元素既属于这个子项,又属于另一个子项 (3)相称性原则 分类应当相称,即划分后子项外延的总和(并集),应当与母项的外延相等(4)层次性原则 分类有一次分类和多次分类之分,一次分类是对被讨论对象只分类一次;多次分类是把分类后的所有的子项作为母项,再次进行分类,直到满足需要为止分类讨论的意义:在解决数学问题时,对于因为存在一些不确定因素无法解答或者结论不能给予统一表述的数学问题,我们往往将问题按某个标准划分为若干类或若干个局部问题来解决,通过正确的分类,能够克服思维的片面性,可
5、以使复杂的问题得到清晰,完整,严密的解答。3. 优势及劣势运用分类讨论思想解题的优势是可将复杂的问题分解成若干个简单的问题,便于解答;恰当的分类讨论可避免丢值漏解,从而提高全面考虑问题的能力,养成周密严谨的数学教养。运用分类讨论思想解题的劣势是容易将一些问题的解答变得繁琐,耗费大量的时间;容易形成一种思维定势,不易于培养创新、有效的解题能力。二、运用分类讨论思想解题正确运用分类讨论思想,是完整解题的基础。但运用分类讨论思想解决问题,必须遵循一定的原则,明确如何进行分类,知道引起分类讨论的原因,明白解题的一般步骤,才能保证解答的正确性。运用分类讨论思想解题的原则主要体现在如何进行分类上。在对分类
6、对象进行划分时,我们应该遵循以下四个原则:划分应是相称的,划分后子项的总和应与母项相等;划分标准统一,对分类的对象应按照统一标准进行划分,不能同时用几种依据去划分;划分的子项必须相互排斥,进行分类后,有些元素不能既属于这个子项,又属于另一个子项;划分不能越级,要按层次一级一级进行分类。运用分类讨论思想解题,必须明白解题的一般步骤。首先,明确是否需要分类;然后确定分类讨论的对象;接着,进行合理的分类;逐步逐级分类讨论,得到阶段性成果;最后,归纳总结,综合得出结论。3 分类讨论思想在初中数学解题中的具体应用1. 分类讨论思想在运用数学概念、定义题中的应用有些数学定义、数学概念是分类给出的,如绝对值
7、、圆锥曲线标准方程的概念等。例1、若,求的值。4 分析:这道题考查学生对绝对值定义的掌握、运用情况。由于绝对值的定义是分类给出的, 所以a,b分别有两个值,这个时候,求a+b的值就需要进行分类讨论。解:因为 所以 当时,; 当时,; 当时,; 当时,2. 分类讨论思想在运算性质、运算要求限制下的应用在解题过程中,往往将式子变形或转化为另外一个式子来进行解题和运算,很多变形和运算是受条件限制的。 例2、已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?2 分析:从题目中寻找关键的解题信息,“数轴上表示
8、这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。解:设甲数为x,乙数为y由题意得: , (1)数轴上表示这两数的点位于原点两侧:若x在原点左侧,y在原点右侧,即 x0,则 4y=8 ,所以y=2 ,x= -6若x在原点右侧,y在原点左侧,即 x0,y0,则 -4y=8 ,所以y=-2,x=6 (2数轴上表示这两数的点位于原点同侧:若x、y在原点左侧,即 x0,y0,y0,则 2y=8 ,所以y=4,x=123. 分类讨论思想在数学定理、性质、公式限制下的应用有些定理或公式本身具有限制条件。如,有些函数的单调性具有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 讨论 思想 初级 低级 中学数学 解题 中的 应用 利用 运用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内