数学思维训练教材五年级(上册).doc
《数学思维训练教材五年级(上册).doc》由会员分享,可在线阅读,更多相关《数学思维训练教材五年级(上册).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 目 录第1讲 平均数 1第2讲 倍数问题(一) 3 第3讲 倍数问题(二) 5 第4讲 假设法解题 7 第5讲 作图法解题 9 第6讲 周期问题11第7讲 置换问题13第8讲 包含与排除15第9讲 估值问题17第10讲 一般应用题19第11讲 盈亏问题21第12讲 算式题23第13讲 行程问题25第14讲 火车行程问题27第15讲 灵活运用29终结性测试题一 31终结性测试题二 32第1讲 平均数专题简析把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的输就是平均数。如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量总份数
2、总数量=平均数总份数总份数=总数量平均数例1某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3,被改的数原来是多少?分析解答: 原来三个数的和是23=6,后来个数的和是33=9,9比6多出了3,是因为把那个数改成了4,因此,原来的数应该是4-3=1。33-23=34-3=1答:被改的数原来是1。随堂练习:1、已知九个数的平均数是72 ,去掉一个数后,余下数的平均数是78,去掉的数是多少?2、有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?例2把五个数从小到大排列,其平均数时38,前三个数的平均数是27,后三个数的平均数是48,中间一
3、个数是多少?分析解答: 先求五个数的和:385=190。在秋初前三个数的和:273=81,后三个数的和:483=144。用前三个数的和加上后三个数的和,这样,中间的那个书就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。 273+483-385=35答:中间一个数是35。随堂练习:1、甲、乙、丙三人的平均年龄为22岁,如果甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?2、十名参赛者平均分是82分,前6人的平均分是83分,后6人的平均分是80分,那么第5人和第6人的平均分是多少分?拓展训练1、化肥厂在一星期前3天平均每天生产化肥250吨,后4天共生产化肥11
4、26吨, 这个星期平均每天生产化肥多少吨?2、修一条渠,第一天修3小时,平均每小时修4.5千米;第二天修5小时,平均每小时修5.3千米,这两天平均每天修多少千米?平均每小时修多少千米?3、三个小组采集树种,第一小组10人,一天采集树种180千克;第二小组12人,一天采集树种240千克;第三小组13人,一天采集树种280千克.平均每人采集树种多少千克?4、张红前三次数学测验平均成绩是92分,第四次得了96分.他四次的平均成绩是多少分?5、下面是某小学五(1)中队第一小队向灾区捐款的情况统计表,请你算出平均每人捐多少元?捐款金额(元)35810人数14346、兴华小学四年级有3个班,一、二班的平均
5、人数是55人,二、三班的平均人数是56人,一、三班的平均人数是52人,问这三个班各有多少人?7、15个同学分连环画,平均每人分到7本,后又来了若干个同学,大家重新分配,平均每人分到5本,问又来了几名同学?8、甲、乙两地相距161千米。汽车从甲地到乙地用了3小时,从乙地返回甲地时,比去时多用了1小时,这辆汽车往返甲、乙两地的平均速度是多少?9、爸爸、妈妈的平均年龄是36.5岁,儿子的年龄是11岁,再过3年,他们三人的平均年龄是多少岁?10、九个数的平均数是72,去掉一个数后,余下的数的平均数是78,去掉的数是多少?11、韩磊期末考试语文、外语、思想品德和自然的平均成绩是81分,数学成绩公布后,他
6、的平均成绩提高2分,他的数学成绩是多少分?12、五年级5个同学参加作文竞赛,其中4人的平均成绩是65分,加上李明的分数后,平均成绩就是70分,李明得了多少分?13、李华期末考试思想品德、语文、数学、英语、社会五科的平均成绩是89分,思想品德、数学两科的平均成绩是91分,语文、英语两科的平均成绩是84分,思想品德、英语两科的平均成绩是86分,且英语比语文多10分。问李华这五科的成绩各是多少分?第2讲 倍数问题(一) 专题分析:倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或者差以及几个数的倍数关系,求这几个数的应用题。 解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1
7、倍数,再根据其他几个数与这个数的关系,确定“和”或者“差”相当于这样的几倍。最后用用除法求出1倍数。 和数(倍数1)较小数 差数(倍数1)较小数例1 两根同样长的铁丝,第一根剪去18米,第二根剪去26米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少米?分析解答:这两根铁丝的差保持不变,而剩下的铁丝的差依然是原来铁丝的差。根据余下的铁丝第一根是第二根的3倍。则余下的铁丝相差2倍。这样很容易计算第二根余下的铁丝是:(2618)(31)4(厘米)则原第二根铁丝长30厘米。随堂练习:1、两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少米
8、?2、一筐苹果和一筐梨的个数相同,卖掉40个苹果和5个梨后,剩下的梨是苹果的6倍。原来两筐水果一共有多少个?例2 甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本?分析解答:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6318(本),则甲组仍是乙组的3倍,事实上甲组不但没有拿出18本,反而接受了乙组的6本,这样24本正好对应后来两组的(532)倍。因此后来乙组的图书是:(636)(53)12(本)。则原来乙组为18本,甲组就是18354(本)。随堂练习:1、原来小明的画片是小红的3倍,后来二人个买了5张,这样小明的画片就是小红的2倍。原来二人
9、各有多少张画片?2、一个书架分上下两层,上层的书的本数是下层的4倍,从下层拿出5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?拓展训练1、幼儿园买来的苹果的个数是 梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。原来买来苹果和梨共多少个?2、两个数的和是682,其中一个数的个位是0,如果把这个0去掉,就得到另一个数。这两个数各是多少? 3、甲粮库的存粮是乙粮库的2倍,甲粮库每天运出40吨,乙粮库每天运出30吨。若干天后,乙粮库的粮食全部运完,甲粮库还有80吨。甲乙粮库原来各有粮食多少吨?4、高年级同学分7人一组植树,已知杨树的棵数正好是杉树的2倍,如果每小组分到杉树6
10、棵,杨树8棵,那么杉树正好分完,杨树还剩20棵。参加植树的一共有多少人?5、兄弟两人原有同样多的人民币,后来哥哥买了5本书,平均每本8.4元。弟弟买了3支笔,每支1.2元。现在弟弟的钱数是哥哥的3倍。兄弟两人原来各有多少钱?6、学校组织夏令营活动,如果参加的女生名额给5个男生,则男女生人数相等,如果参加的男生名额给4个女生,则男生人数是女生的一半。原定夏令营中男女生各多少人?7、体育室有排球和篮球共65个,已知篮球个数的3倍比排球个数的一半多20个。排球和篮球各有多少个?8、甲乙二人共存钱550元,当甲取出自己存款的一半,乙取出自己的70元时,两人余下的钱正好相等,求甲乙原来各存有多少钱?9、
11、原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的2倍。食堂里原来存有大米、面粉各多少千克?10、饲养场的白兔是黑兔的5倍,后来卖掉10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍。饲养场原来养白兔和黑兔各多少只?第3讲 倍数问题(二) 例1 幼儿园买来苹果的个数是梨的2倍,如果每组领3个梨和4个苹果,结果梨正好分完,苹果还剩16个。两种水果原来各有多少个?分析解答:因为苹果是梨的2倍,如果每组领梨3个,领苹果就应为6个,这样才会一起分完。可实际每组只分4个苹果,少分2个,剩下的16个苹果就告诉我们有8个组。因此苹果的个数是:841648(个),梨有24个。随
12、堂练习:同学们带着水果去看敬老院的老人,带的苹果是橘子的3倍,如果每位老人拿2个橘子和4个苹果,那么,橘子正好分完,苹果还多14个。问同学们把苹果分给了几位老人? 例2 有两筐橘子,如果从甲筐拿出8个放进乙筐,两筐的橘子就同样多;如果从乙筐拿出13个放到甲筐,甲筐里的橘子是乙筐的2倍。甲乙两筐原来各有多少个橘子?分析解答:“如果从甲筐拿出8个放进乙筐,两筐的橘子就同样多;”表示两筐橘子相差16个,“如果从乙筐拿出13个放到甲筐,”表示现在两筐的橘子差距是1613242(个)“甲筐里的橘子是乙筐的2倍”说明现在倍数差是211(倍),这样就可以计算现在乙筐的橘子数是:42142(个)则原来就是55
13、个。甲筐的计算就容易了。随堂练习:甲乙仓库存有货物,若从甲仓库取31吨放入乙仓库,则两仓库存货物同样多;若乙仓库取14吨放入甲仓库,则甲仓库的货物是乙仓库的4倍。原来两仓库各存货物多少吨? 拓展训练1、养鸡场新买来100只小鸡,其中,母鸡只数的4倍比公鸡只数的3倍多120只。买来母鸡、公鸡各多少只?思路:题中已知母鸡和公鸡只数的和是100只,就可以计算它们的4倍是400只。又因为母鸡只数的4倍比公鸡只数的3倍多120只,从400只去掉120只,就是公鸡只数的7倍,则公鸡的只数是40只,母鸡就是60只。2、有两块地共有80公顷,第一块地的3倍比第二块地的2倍少10公顷。这两块地各有多少公顷?3、
14、养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡的只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡?思路:养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60只,则母鸡应增加360只,这样才能保证母鸡是公鸡的6倍,实际上母鸡只增加了60只,少增加的300只就是母鸡只数是公鸡只数的4倍。所以现在的公鸡数是:60(61)(64)150(只)原来的总数为:(15060)(16)630(只)。4、今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。今年小明多少岁?练习七:5、有1800千克的货物,分装在甲乙丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200
15、千克。甲乙丙三辆车各装货物多少千克?思路:把乙车看成1倍数,因为乙车比丙车多装200千克,甲车是乙车装的2倍,这样在总数中加上200千克,就可以看成乙车的4倍。所以乙车装了500千克。甲车和丙车就好计算了。6、三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱,三堆货物各多少箱?7、甲乙丙三数的和是224,如果甲是乙的3倍,丙是甲的4倍,求甲乙丙三数各是多少?8、把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。问:上中下三层各放书多少本?9、甲乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲
16、书架的书是乙书架的2倍还多150本。乙书架原来有书多少本?思路:先计算现在的甲书架的书的本数:60032400(本),根据甲书架的书是乙书架的2倍还多150本,可计算现在乙书架的书的本数:(400150)2125(本),因为从乙书架借出四分之三后是125本,所以原来的本数是:12514500(本)。10、某校有男生630人,选出男生人数的三分之一和女生的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。这个学校共有学生多少人?第4讲 假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求
17、的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。例1 有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?分析解答:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30(105)6(张)。也可以假设有14张10元的随堂练习:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的银币各有多少枚?3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一
18、元和一角的人民币。求换来的这两种人民币各多少张?例2 有一元、二元、五元的人民币50张,总面值为116元。已知一元的比二元的多2张,问三种面值的人民币各有多少张?分析解答:如果减少2张一元的,那么,总张数就是48张,总面值就是114元,这样一元和二元的张数就同样多了。假设48张都是5元的,则总面值为240元,比实际多了126元,这126元不仅包括把一元的假设为5元,而且包括把二元的假设为5元,这样在两张5元中就多了7元。所以二元的就有18张,一元的就有20张,五元的有12张。随堂练习:1、有3元、5元和7元的电影票400张,一共价值1920元。其中7元的和5元的张数相等,三种价值的电影票各有多
19、少张?2、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?3、有1角、2角、4角、5角的邮票共26张,总计6.9元。其中,1角和2角的张数相等,4角和5角的张数相等。求这四张邮票各有多少张?拓展练习1、有黑白棋子一堆,其中黑子个数是白子个数的2倍。如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个?思路:假设每次取出3个白子,黑子应取出6个,那么白子剩下1个时,黑子应剩下2个。而实际剩下了18个,是因为每次少取了2个黑子。所以取了(18)(64)8(次)。2、有黑白棋子一堆,其中黑子个数是白子个数的3倍。如
20、果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个?3、有黑白棋子一堆,其中黑子个数是白子个数的2倍。如果从这堆棋子中每次同时取出黑子3个,白子4个,那么取了多少次后,白子余2个,黑子余29个?4、操场上有一群同学,男生人数是女生的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人?操场上共有多少名同学?5、用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货物价值2520元。问大小汽车各多少辆?思路:根据“若每箱便宜2元,则这批货物价值2520元。”可以知道一共便宜
21、了504元,这样可以计算出货物有252箱。假设18辆都是大汽车,可以装324箱,比实际多装72箱。用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。6辆大汽车。6、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。平均每天运14次。这几天中有几天是雨天?7、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。问大箩、小箩各有多少个?8、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多
22、少千克大西瓜?9、甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。两人各投10次,共得152分。其中甲比乙多得16分,问两人各中多少次?10、百货公司委托搬运站送500只玻璃瓶,双方商定每只运费0.24元。如果打破一只,不但不给运费,而且还要赔偿1.26元,结果,搬运站共得运费115.50元。问搬运中打破了几只?第5讲 作图法解题专题分析:用作图法把应用题的数量关系表示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。在解答已知一个数或者几个数的和差、差倍以及相互之间的关系、求其中一个数或者几倍数问题等应用题时,我们可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 思维 训练 教材 年级 上册
限制150内