新课标高中数学人教A版必修一 3.1.2函数零点的存在性定理 教案.doc
《新课标高中数学人教A版必修一 3.1.2函数零点的存在性定理 教案.doc》由会员分享,可在线阅读,更多相关《新课标高中数学人教A版必修一 3.1.2函数零点的存在性定理 教案.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1.2 函数零点的存在性定理(一)教学目标1知识与技能体验零点存在性定理的形成过程,理解零点存在性定理,并能应用它探究零点的个数及存在的区间.2过程与方法经历由特殊到一般的过程,在由了解零点存在性定理到理解零点存在性定理,从而掌握零点存在性定理的过程中,养成研究问题的良好的思维习惯.3情感、态度与价值观经历知识发现、生成、发展、掌握、理解的过程,学会观察问题,发现问题,从而解决问题;养成良好的科学态度,享受探究数学知识的乐趣.(二)教学重点与难点重点:掌握零点存在性定理并能应用.难点:零点存在性定理的理解(三)教学方法通过问题发现生疑,通过问题解决析疑,从而获取知识形成能力;应用引导与动手
2、尝试结合教学法,即学生自主探究与教师启发,引导相结合.(四)教学过程教学环节教学内容师生互动设计意图复习回顾提出问题1函数零点的概念2函数零点与方程根的关系3实例探究已知函数y= x2+4x 5,则其零点有几个?分别为多少?生:口答零点的定义,零点与根的关系师:回顾零点的求法生:函数y= x2+4x 5的零点有2个,分别为5,1回顾旧知,引入新知示例探究引入课题1探究函数y = x2 + 4x 5的零点所在区间及零点存在区间的端点函数值的正负情况的关系师:引导学生利用图象观察零点的所在区间,说明区间端一般取整数.生:零点5(6,4)零点1(0,2)且f (6)f (4)0f (0)f (2)0
3、师:其它函数的零点是否具有相同规律呢?观察下列函数的零点及零点所在区间.f (x) = 2x 1,f (x) = log2(x 1)生:函数f (x) = 2x 1的零点为且f (0) f (1)0.函数f (x) = log2(x 1)的零点为2(1,3)且f (1) f (3)0由特殊到一般,归纳一般结论,引入零点存在性定理发现定理零点存在性定理如果函数y = f (x)在区间a,b上的图象是连续不断的一条曲线,并且有f (a)f (b)0那么,函数y = f (x)在区间a,b内有零点,即存在c(a,b),使得f (c) = 0这个c也就是方程f (x) = 0的根师生合作分析,并剖析定
4、理中的关键词连续不断f (a)f (b)0师:由于图象连续不断,若f (a)0,f (b)0,则y = f (x)的图象将从x轴上方变化到下方,这样必通过x轴,即与x轴有交点 形成定理,分析关键词,了解定理.深化理解定理的理解(1)函数在区间a,b上的图象连续不断,又它在区间a,b端点的函数值异号,则函数在a,b上一定存在零点(2)函数值在区间a,b上连续且存在零点,则它在区间a,b端点的函数值可能异号也可能同号(3)定理只能判定零点的存在性,不能判断零点的个数师:函数y = f (x) = x2 ax + 2在(0,3)内,有2个零点.有1个零点,分别求a的取值范围.生:f(x)在(0,1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课标高中数学人教A版必修一 3.1.2函数零点的存在性定理 教案 新课 标高 学人 必修 3.1 函数 零点 存在 定理
限制150内