圆锥曲线知识点总结(基础).doc
《圆锥曲线知识点总结(基础).doc》由会员分享,可在线阅读,更多相关《圆锥曲线知识点总结(基础).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆锥曲线的方程与性质1椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若为椭圆上任意一点,则有。椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。注:以上方程中的大小,其中;在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。(2)椭圆的性质范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲
2、线关于轴对称。若同时以代替,代替方程也不变,则曲线关于原点对称。所以,椭圆关于轴、轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,且,即;离心率:椭圆的焦距与长轴的比叫椭圆的离心率。,且越接近,就越接近
3、,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,两焦点重合,图形变为圆,方程为。2双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。注意:式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);当时,表示两条射线;当时,不表示任何图形;两定点叫做双曲线的焦点,叫做焦距。椭圆和双曲线比较:椭 圆双 曲 线定义方程焦点注意:如何用方程确定焦点的位置!(2)双曲线的性质范围:从标准方程,看出曲线在坐标系中的范围:双曲线在两条直线的外侧。即,即双曲线在两条直线的外侧。对称性:双曲线关于每个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 知识点 总结 基础
限制150内