初中数学最全知识点总结+初中数学公式汇总+中考最后压轴题(二次函数、几何图形结合题).doc
《初中数学最全知识点总结+初中数学公式汇总+中考最后压轴题(二次函数、几何图形结合题).doc》由会员分享,可在线阅读,更多相关《初中数学最全知识点总结+初中数学公式汇总+中考最后压轴题(二次函数、几何图形结合题).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、猜想、探究题1. 已知:抛物线与x轴交于A、B两点,与y轴交于点C 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OAOC)是方程的两个根,且抛物线的对称轴是直线(1)求A、B、C三点的坐标;(2)求此抛物线的解析式;(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DEBC交AC于点E,连结CD,设BD的长为m,CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由yxBDOAEC2. 已知,如图1,过点作平行于轴的直线,抛物线上的两点的横坐标分别为1和4,直线交轴于点
2、,过点分别作直线的垂线,垂足分别为点、,连接(1)求点的坐标;(2)求证:;(3)点是抛物线对称轴右侧图象上的一动点,过点作交轴于点,是否存在点使得与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由EDCAFBxOylEDCOFxy(图1)备用图3. 已知矩形纸片的长为4,宽为3,以长所在的直线为轴,为坐标原点建立平面直角坐标系;点是边上的动点(与点不重合),现将沿翻折得到,再在边上选取适当的点将沿翻折,得到,使得直线重合(1)若点落在边上,如图,求点的坐标,并求过此三点的抛物线的函 数关系式;(2)若点落在矩形纸片的内部,如图,设当为何值时, 取得最大值?CyEBFDAPxO
3、图ABDFECOPxy图(3)在(1)的情况下,过点三点的抛物线上是否存在点使是以 为直角边的直角三角形?若不存在,说明理由;若存在,求出点的坐标4. 如图,已知抛物线交轴于A、B两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0)(1)求抛物线的对称轴及点A的坐标;(2)在平面直角坐标系中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;ODBCAE(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由5. 如图, 已知抛
4、物线(a0)与轴交于点A(1,0)和点B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的对称轴与轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由yCAMOBx图yCAOBx图(3)如图,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标二、动态几何6. 如图,在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止设动点运动的时间为
5、秒(1)求边的长;(2)当为何值时,与相互平分;(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?CcDcAcBcQcPc7. 已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)(1)求抛物线的解析式;(2)动点P在轴上移动,当PAE是直角三角形时,求点P的坐标(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标yxODEABC8. 已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、(1)求这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得的周长最小请求出点P的坐标(3)若点是线段上的一个动点(
6、不与点O、点C重合)过点D作交轴于点连接、设的长为,的面积为求与之间的函数关系式试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由ACxyBO9. 如图1,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且,(1)求该抛物线所对应的函数关系式;(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平 行移动,同时一动点也以相同的速度从点出发向匀速移动设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示)当时,判断点是否在直线上,并说明理由;yxMBCDOA图2PNEyxMBCDO(A)图1E设以为顶点的多边形面积为,试问
7、是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由10. 已知抛物线:(1)求抛物线的顶点坐标(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式(3)如下图,抛物线的顶点为P,轴上有一动点M,在、这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由54321123456789PyxO【提示:抛物线()的对称轴是顶点坐标是】11. 如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物
8、线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标(5分)yxAOBPM图1C1C2C3yxAOBPN图2C1C4QEF12. 如图,在平面直角坐标系中,已知矩形的三个顶点、抛物线过两点(1)直接写出点的坐标,并求出抛物线的解析式;(2)动点从点出发,沿线段向终点运动,同时点从点出发,沿线
9、段向终点运动,速度均为每秒1个单位长度,运动时间为秒过点作交于点过点作于点,交抛物线于点当为何值时,线段最长?连接在点运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值yOxAFDQGEPBC13. 如图1,已知正比例函数和反比例函数的图像都经过点M(2,),且P(,- 2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双
10、曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值图1图214. 如图,矩形ABCD中,AB = 6cm,AD = 3cm,点E在边DC上,且DE = 4cm动点P从点A开始沿着ABCE的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动若点P、Q从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积 为S(cm2),求S与t的函数关系式 DEBPA CQ15. 如图,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为设的外接圆的圆心为点(1)求与轴的另一个交点D
11、的坐标;(2)如果恰好为的直径,且的面积等于,求和的值 16. 如图,点坐标分别为(4,0)、(0,8),点是线段上一动点,点在轴正半轴上,四边形是矩形,且设,矩形与重合部分的面积为根据上述条件,回答下列问题:(1)当矩形的顶点在直线上时,求的值;(2)当时,求的值;BCOEDAxy(3)直接写出与的函数关系式;(不必写出解题过程)(4)若,则 17. 直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶
12、点的平行四边形的第四xAOQPBy个顶点的坐标18. 如图1,过ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ABC的“水平宽”(a),中间的这条直线在ABC内部的线段的长度叫ABC的“铅垂高”(h)我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半A2BC铅垂高水平宽h a 图1解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B(1)求抛物线和直线AB的解析式;(2) 求CAB的铅垂高CD及;(3) 设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使得 SPAB=SCAB,若存在,求出
13、P点的坐标;若不存在,请说明理由图2xCOyABD1119. 如图,在平面直角坐标系中,点的坐标分别为点在轴上已知某二次函数的图象经过、三点,且它的对称轴为直线点为直线下方的二次函数图象上的一个动点(点与、不重合),过点作轴的平行线交于点(1)求该二次函数的解析式;(2)若设点的横坐标为用含的代数式表示线段的长(3)求面积的最大值,并求此时点的坐标xyBFOACPx=120. 如图所示,菱形的边长为6厘米,从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这
14、里规定:点和线段是面积为的三角形),解答下列问题: (1)点、从出发到相遇所用时间是 秒;(2)点、从开始运动到停止的过程中,当是等边三角形时的值是 秒;(3)求与之间的函数关系式PQABCD21. 定义一种变换:平移抛物线得到抛物线,使经过的顶点设的对称轴分别交于点,点是点关于直线的对称点(1)如图1,若:,经过变换后,得到:,点的坐标为,则的值等于_;四边形为( )A平行四边形 B矩形 C菱形 D正方形(2)如图2,若:,经过变换后,点的坐标为,求的面积;(3)如图3,若:,经过变换后,点是直线上的动点,求点到点的距离和到直线的距离之和的最小值BDCO(A)yxF1F2BDCOyxF1F2
15、ABDCOyxF1F2AP(图1)(图2)(图3)22. 如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积OABCDEyx备用图23. 如图,点坐标分别为(4,0)、(0,8),点是线段上一动点,点在轴正半轴上,四边形是矩形,且设,矩形与重合部分的面积为根据
16、上述条件,回答下列问题:(1)当矩形的顶点在直线上时,求的值;(2)当时,求的值;(3)直接写出与的函数关系式;(不必写出解题过程)BCOEDAxy(4)若,则 24. 如图所示,某校计划将一块形状为锐角三角形的空地进行生态环境改造已知的边长120米,高长80米学校计划将它分割成、和矩形四部分(如图)其中矩形的一边在边上,其余两个顶点、分别在边、上现计划在上种草,每平米投资6元;在、上都种花,每平方米投资10元;在矩形上兴建爱心鱼池,每平方米投资4元(1)当长为多少米时,种草的面积与种花的面积相等?(2)当矩形的边为多少米时,空地改造总投资最小?最小值为多少?AGHKBEDFC25. 已知:是
17、方程的两个实数根,且,抛物线的图象经过点(1)求这个抛物线的解析式;(2)设点是抛物线上一动点,且位于第三象限,四边形是以为对角线的平行四边形,求的面积与之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当的面积为24时,是否存在这样的点,使为正方形?若存在,求出点坐标;若不存在,说明理由QBOAPxy三、说理题26. 如图,抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;OxyABC41(3)在直线AC上方的抛物线上有一点D,使得
18、的面积最大,求出点D的坐标27. 如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由OxyNCDEFBMA28. 如图1,已知:抛物线与轴交于两点,与轴交于点,经过 两点的直线是,连结(1)两点坐标分别为(_,_)、(_,_),抛物线的函数关系式为_;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 知识点 总结 数学公式 汇总 中考 最后 压轴 二次 函数 几何图形 结合
限制150内