矩阵低秩分解理论ppt课件.ppt
《矩阵低秩分解理论ppt课件.ppt》由会员分享,可在线阅读,更多相关《矩阵低秩分解理论ppt课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。矩阵低秩分解理论及其应用分析矩阵低秩分解理论及其应用分析成科扬2013年9月4日“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。从稀疏表示到低秩分解 稀疏表示压缩感知(Compressed sensing)“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以
2、公共安全视频监控联网应用为重点的“群众性治安防控工程”。从稀疏表示到低秩分解 矩阵低秩分解 矩阵低秩稀疏分解(Sparse and low-rank matrix decomposition) 低秩矩阵恢复(Low-rank Matrix Recovery) 鲁棒主成分分析(Robust principle component analysis, RPCA) 低秩稀疏非相干分解(Rank-sparsity incoherence)observationlow-ranksparse“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安
3、全视频监控联网应用为重点的“群众性治安防控工程”。预备知识“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。低秩矩阵恢复(鲁棒主成分分析RPCA) 在许多实际应用中,给定的数据矩阵往往是低秩或近似低秩的,但存在随机幅值任意大但是分布稀疏的误差破坏了原有数据的低秩性,为了恢复矩阵的低秩结构,可将矩阵分解为两个矩阵之和,即,其中矩阵和未知,但是低秩的。当矩阵的元素服从独立同分布的高斯分布时,可用经典的PCA来获得最优的矩阵,即求解下列最优化问题: 当为稀疏的大噪声矩阵时,问题转化为双
4、目标优化问题: 引入折中因子,将双目标优化问题转换为单目标优化问题:“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。RPCA的求解 凸松弛NP难问题松弛后矩阵核范数“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。迭代阈值算法(iterative thresholding,IT)将最优化问题正则化,便得到优化问题:优化问题式的拉格朗日函数为使用迭代阈值算法交替更新
5、矩阵,和。当=k,=k时,当k+1,k时,当k+1 ,k+1时,其中:步长k满足 k 1算法的迭代式形式简单且收敛,但它的收敛速度比较慢,且难以选取合适的步长“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。加速近端梯度算法(accelerated proximal gradient,APG)将优化问题式的等式约束松弛到目标函数中,得到如下的拉格朗日函数: 记于是L(,)=(,)+(,)。函数(,)不可微,而(,)光滑且具有李普希兹连续梯度,即存在Lf0,使得 其中: 表示函数(
6、,)关于矩阵变量和的梯度。此处取Lf =。对于给定的与同型的两个矩阵A和E,作(,)的部分二次逼近:“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。加速近端梯度算法(accelerated proximal gradient,APG)为了得到更新A和E时的步长,需先确定参数k+1:于是A和E的迭代更新公式为:参数的迭代公式为其中: 为事先给定的正数;0。尽管与算法类似,但它却大大降低了迭代次数。“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支
7、撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。 由于核范数的对偶范数为谱范数,所以优化问题的对偶问题为: 其中: 表示矩阵元素绝对值最大的值。当优化问题对偶式取得最优值 时,必定满足 即此优化问题等价于: 上述优化问题是非线性、非光滑的,可以使用最速上升法求解。当 时,定义正规锥 其中 表示函数(.)的次梯度。此时,优化问题的最速上升方向为k,其中k为在(k)上的投影。使用线性搜索方法确定步长大小: 于是k的更新过程为 DULL比APG算法具有更好的可扩展性,这是因为在每次迭代过程中对偶方法不需要矩阵的完全奇异值分解。对偶方法(DUL)“雪亮工程是以区(县)
8、、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。增广拉格朗日乘子法(augmented Lagrange multipliers,ALM)构造增广拉格朗日函数:当k, k ,使用交替式方法求解块优化问题 min , (,k, k )。使用精确拉格朗日乘子法交替迭代矩阵和,直到满足终止条件为止。若 则“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。“雪亮工程是以区(县)、乡(镇)、村(
9、社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。交替方向方法(alternating direction methods,ADM,IALM) ADM对ALM做了改善,即不精确拉格朗日乘子法(inexactALM它不需要求 的精确解,即矩阵和的迭代更新公式为:“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。求解方法性能比较“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化
10、为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。低秩矩阵恢复应用 图像恢复“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。低秩矩阵恢复应用 图像去光照影响恢复“雪亮工程是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。低秩矩阵恢复应用 视频背景建模Cands, Li, Ma, and W., JACM, May 2011.“雪亮工程是以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 分解 理论 ppt 课件
限制150内