《任意角的三角函数(优秀课件)ppt.ppt》由会员分享,可在线阅读,更多相关《任意角的三角函数(优秀课件)ppt.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.在初中我们是如何定义锐角三角函数的?在初中我们是如何定义锐角三角函数的?sincostancacbba复习回顾复习回顾OabMPcOabMPyx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?新课新课 导入导入22:barOPbMPaOM其中yx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?raOPOMcosrbOPMPsinabOMMPtanbaP,Mo如果改变点在终边上的位置,这三个比值会改变吗?如果改变点在终边上的位置,这三个比值会改变吗?PMOPMPsinOPOMcosOMMPtanOMPPMOPOP
2、MPOOMMOPM诱思诱思 探究探究MOyxP(a,b)OPMPsinOPOMcosOMMPtan,则若1 rOPbaab1.锐角三角函数(在单位圆中)锐角三角函数(在单位圆中)以原点以原点O为为圆心,以单位圆心,以单位长度为半径的圆,称为长度为半径的圆,称为单位圆单位圆. yOP),(bax1M2.任意角的三角函数定义任意角的三角函数定义 设设 是一个任意角,它的终边与单位圆交于点是一个任意角,它的终边与单位圆交于点),(yxP 那么那么:(1) 叫做叫做 的正弦,记作的正弦,记作 ,即,即 ;ysinysin (2) 叫做叫做 的余弦,记作的余弦,记作 ,即,即 ; cosxxcos(3)
3、 叫做 的正切正切,记作 ,即 。 xytanxytan 所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角为自变量角为自变量,以,以单位圆单位圆上点上点的的坐标或坐标的比值坐标或坐标的比值为函数值的为函数值的函数,我们将他们称为函数,我们将他们称为三角函数三角函数.0 , 1AOyxyxP ,)0(x使比值有意义的角的集合使比值有意义的角的集合即为三角函数的定义域即为三角函数的定义域.)0 , 1 (AxyoP),(yx的终边的终边说说 明明(1)正弦就是交点的纵坐标,余弦就是交点)正弦就是交点的纵坐标,余弦就是交点横坐标的比值横坐标的比值. .的横坐标,的横坐标, 正切就是正切就是
4、 交点的纵坐标与交点的纵坐标与. .(2) 正弦、余弦总有意义正弦、余弦总有意义.当当 的终边在的终边在 y横坐标等于横坐标等于0, xytan无意义,此时无意义,此时 )(2zkk轴上时,点轴上时,点P 的的(3)由于角的集合与实数集之间可以建立)由于角的集合与实数集之间可以建立一一对应关系一一对应关系,三角函数可以看成是自变量为实数的函数三角函数可以看成是自变量为实数的函数.任意角的三角函数的定义过程:任意角的三角函数的定义过程:直角三角形中定义锐角三角函数直角三角形中定义锐角三角函数 abrarbtan,cos,sin直角坐标系中定义锐角三角函数直角坐标系中定义锐角三角函数 abrarb
5、tan,cos,sin单位圆中定义锐角三角函数单位圆中定义锐角三角函数 ababtan,cos,sin单位圆中定义任意角的三角函数单位圆中定义任意角的三角函数 ,sinyxcosxytan,例例1.求求 的正弦、余弦和正切值的正弦、余弦和正切值.3535AOB解:解:在直角坐标系中,作在直角坐标系中,作 AOB,易知,易知 的终边与单位圆的交点坐标为的终边与单位圆的交点坐标为 13( ,).22所以所以 53sin,32 51cos,325tan3.3 思考:思考:若把角若把角 改为改为 呢呢? 3567,2167sin,2367cos3367tan实例实例 剖析剖析xyoAB35P15.1几
6、个特殊角的三角函数值几个特殊角的三角函数值角角0o30o45o60o90o180o270o360o角角的弧的弧度数度数sinsincoscostantan2 32 2 000000001111 1 不不存存在在不不存存在在03 4 6 2222112323332123例例2.已知角已知角 的终边经过点的终边经过点 ,求角,求角 的正弦、余弦和正切值的正弦、余弦和正切值 .)4, 3(0P220( 3)( 4)5.OP 解解:由已知可得由已知可得设角设角 的终边与单位圆交于的终边与单位圆交于 ,),(yxP分别过点分别过点 、 作作 轴的垂线轴的垂线 、0PMPP00PMx400PM于是,于是,
7、 ;54|1sin000OPPMOPMPyyyMP30OMxOMOMP00POM;531cos00OPOMOPOMxxsin4tan.cos3yx4, 30P0MOyxMyxP , 设角设角 是一个任意角,是一个任意角, 是终边上的任意一点,是终边上的任意一点,点点 与原点的距离与原点的距离 .),( yxP022yxrP那么那么 叫做叫做 的正弦,即的正弦,即ryrysin 叫做叫做 的余弦,即的余弦,即rxrxcos 叫做叫做 的正弦,即的正弦,即xy0tanxxy 任意角任意角 的三角函数值仅与的三角函数值仅与 有关,而与点有关,而与点 在角的在角的终边上的位置无关终边上的位置无关.P定
8、义推广:定义推广:135122222yxr1312cosrx125tanxy5sin,13yr于是于是,巩固巩固 提高提高练习练习: 1.已知角已知角 的终边过点的终边过点 , 求求 的三个三角函数值的三个三角函数值.5 ,12P解:解:由已知可得:由已知可得:2P15 ,8aaaa.已知角 的终边上一点R且0 ,sin,cos ,tan求角 的的值.-15 ,8 ,xa ya解:由于22158170raaaa所以 1017 ,ara若则于是88151588sin,cos,tan171717171515aaaaaa 20-17 ,ara若则于是88151588sin,cos,tan171717
9、171515aaaaaa 32sin,cos ,tan.yx.已知角 的终边在直线上,求角 的的值 1解: 当角 的终边在第一象限时,221,2125在角 的终边上取点,则r=22 5152sin,cos,tan255155 2当角 的终边在第三象限时,221, 2125r 在角 的终边上取点,则22 5152sin,cos,tan255155 练习4_,1313sin3(mmp则且终边上的一点,)是角,已知点23rm解析:131332mm2131322mm412 m1.根据三角函数的定义,确定它们的定义域根据三角函数的定义,确定它们的定义域(弧度制)(弧度制)探探究究三角函数三角函数定义域定
10、义域sincostanR)(2Zkk2.确定三角函数值在各象限的符号确定三角函数值在各象限的符号yxosinyxocosyxotan+( )( )( )( )( )( )( )( )( )( )( )R+-+-+-+-心得心得: :角定象限角定象限, ,象限定符号象限定符号. .例例3. 求证:当下列不等式组成立时,角求证:当下列不等式组成立时,角 为第三象限角为第三象限角.反之也对反之也对0tan 0sin 证明:证明: 因为因为式式 成立成立,所以所以 角的终边可能位于第三角的终边可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 轴的非正半轴上;轴的非正半轴上;0sin 又因为
11、又因为式式 成立,所以角成立,所以角 的终边可能位于的终边可能位于第一或第三象限第一或第三象限. 0tan 因为因为式都成立,所以角式都成立,所以角 的终边只能位于第三象限的终边只能位于第三象限.于是角于是角 为第三象限角为第三象限角.反过来请同学们自己证明反过来请同学们自己证明.如果两个角的终边相同,那么这两如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?个角的同一三角函数值有何关系? 终边相同的角的同一三角函数值相等(终边相同的角的同一三角函数值相等(公式一公式一)tan)2tan(cos)2cos(sin)2sin(kkk其中其中zk 利用公式一,可以把求任意角的三角函数值,
12、转化为利用公式一,可以把求任意角的三角函数值,转化为求求 角的三角函数值角的三角函数值 .020360到或 ? 例题例题cossintantan. 例例4.4.确确定定下下列列三三角角函函数数值值的的符符号号, ,然然后后用用计计算算器器验验证证: : (1)250;(2)(-);(3)(-672 );(4)3 (1)250;(2)(-);(3)(-672 );(4)34 4(1)因为)因为 是第三象限角,所以是第三象限角,所以 ;2500250cos(3)因为)因为 = 而而 是第一象限角,所以是第一象限角,所以)672tan(tan(482 360 )tan48 , tan( 672 )0
13、; 48解:解: (2)因为)因为 是第四象限角,所以是第四象限角,所以4sin0;420tantan()tan. ( (4 4) )3 3o5.911 (1)sin1480 10; (2)cos; (3)tan(-).46例 求下列三角函数值:oooo(1)sin1480 10 = sin(40 10+ 4360 ) = sin40 100.645; 92(2)coscos(2 )cos;4442113(3)tan()tan(2 )tan.6663解:解:6.已知已知 在第二象限在第二象限, 试确定试确定 sin(cos ) cos(sin ) 的符号的符号. 解解: 在第二象限在第二象限,
14、 -1cos 0, 0sin 1. - - - -1, 1 ,2 2 - - cos 0, 0sin . 2 2 sin(cos )0. sin(cos ) cos(sin )0. 故故 sin(cos ) cos(sin ) 的符号为的符号为“ - - ”号号.117119cossintan363练习:求值117119cossintan363解:cos4sin12tan 6363cossintan3631131322 1. 内容总结:内容总结: 三角函数的概念三角函数的概念.三角函数的定义域及三角函数值在各象限的符号三角函数的定义域及三角函数值在各象限的符号.诱导公式一诱导公式一.运用了定义
15、法、公式法、数形结合法解题运用了定义法、公式法、数形结合法解题.划归的思想,数形结合的思想划归的思想,数形结合的思想.归纳归纳 总结总结2 .方法总结:方法总结:3 .体现的数学思想:体现的数学思想:MPy sincosxOMMAP下面我们再从图形角度认识一下三角函数下面我们再从图形角度认识一下三角函数思考思考: 为了去掉等式中得绝对值符号,能否为了去掉等式中得绝对值符号,能否 给线段给线段OM、MP规定规定一个适当的方向一个适当的方向, 使它们的取值与点使它们的取值与点P的坐标一致?的坐标一致?【定义定义】有向线段有向线段* 带有方向的线段叫有向线段带有方向的线段叫有向线段.*有向线段的大小
16、称为它的数量有向线段的大小称为它的数量.在坐标系中在坐标系中, ,规定规定: : 有向线段的方向与坐标系的方向相同有向线段的方向与坐标系的方向相同.即同向时即同向时,数量为正数量为正;反向时反向时,数量为负数量为负.yxxyyyxxMMMMOOOOPPPP的的终边终边的的终边终边的的终边终边的的终边终边A(1,0)A(1,0)A(1,0)A(1,0)()()()() 当角当角的终边不在坐的终边不在坐标轴上时标轴上时,以以M为始点、为始点、P为终点为终点,规定规定: 当线段当线段MP与与y轴轴同向同向 时时,MP的方向为的方向为正向正向,且有且有正值正值y; 当线段当线段MP与与y轴轴反向反向时
17、时MP的的方向方向为为负向负向,且有且有负值负值y. MP=y=sin 有有向线段向线段MP叫角叫角的的正正弦线弦线yxxyyyxxMMMMOOOOPPPP的的终边终边的的终边终边的的终边终边的的终边终边A(1,0)A(1,0)A(1,0)A(1,0)()()()()|MP|=|y|=|sin|OM|=|x|=|cos| 当角当角的终边不在坐的终边不在坐标轴上时标轴上时,以以O为始点、为始点、M为终点为终点,规定规定: 当线段当线段OM与与x轴轴同向同向 时时,OM的方向为的方向为正向正向,且且有有正值正值x; 当线段当线段OM与与x轴轴反向反向时时,OM的方向为的方向为负向负向,且且有有负值
18、负值x. OM=x=cos 有有向线段向线段OM叫角叫角的的余余弦线弦线TTTyxxyyyxxMMMMOOOOPPPP的的终边终边的的终边终边的的终边终边的的终边终边A(1,0)A(1,0)A(1,0)A(1,0)()()()()T过点过点A(1,0)作单位作单位圆的切线圆的切线,设它与设它与的终边或其反向延的终边或其反向延长线相交于点长线相交于点T.tanMPOMATyATOAx有向线段有向线段ATAT叫叫角角的的正切线正切线这三条与单位圆有关的有向线段这三条与单位圆有关的有向线段MP、OM、AT,分别叫做角分别叫做角的的正弦线、余弦线、正切正弦线、余弦线、正切线线,统称为统称为三角函数线三
19、角函数线yxTM OP的的终边终边A(1,0)当角当角的终边与的终边与x轴重合时轴重合时,正弦线、正切正弦线、正切线线,分别变成一个点分别变成一个点,此时角此时角的的正弦值和正正弦值和正切值都为切值都为0;当角当角的终边与的终边与y轴重合时轴重合时,余余弦线变成一个点弦线变成一个点,正切线不存正切线不存在在,此时角此时角的的正切值不存在正切值不存在.规律规律:三角函数线是:三角函数线是有向线段的数量有向线段的数量,要,要分清分清起点、终点起点、终点。1 1)凡含原点的线段,均以原点为起点;)凡含原点的线段,均以原点为起点; 2 2)不含原点的线段,线段与坐标轴的交点)不含原点的线段,线段与坐标
20、轴的交点为起点;为起点;3 3)正切线)正切线ATAT:起点:起点A A一定是单位圆与轴的一定是单位圆与轴的非负半轴的交点,终点非负半轴的交点,终点T T为终边(或延长线)为终边(或延长线)与过与过A A的圆的切线的交点的圆的切线的交点41.,3例 作出角的正弦线 余弦线 正切线. MPMP是正弦线是正弦线OMOM是余弦线是余弦线 AT AT是正切线是正切线y yxo o MMP PA AT T例例 题题 示示 范范例例2.2.作出下列各角的正弦线,余弦线,正切线作出下列各角的正弦线,余弦线,正切线332(1) ;(;(2) 21sin xyoP1P2xyo T A210 30 例例3利用单位
21、圆寻找适合下列条件的利用单位圆寻找适合下列条件的0 到到360 的角的角.3030 150150 解解:3030 9090 或或210210 270270 3tan3例例 4、在单位圆中作出符合下列条件的角的终边、在单位圆中作出符合下列条件的角的终边:;21sinxOy-1-11121y角的终边PM1(2)sin;2)(265,26Zkkk -1xy11-1O例例:在单位圆中作出符合条件的角的终边在单位圆中作出符合条件的角的终边: 21cos221x335Zkkk352 ,32变式:变式: 写出满足条件写出满足条件 cos 的角的角的集合的集合.2123xOy-1-1116611323462 |k,或322k342kZkk,6112Zkkkkk)6112 ,342322 ,62( 小小 结结1.2三角函数线的定义,会画三角函数线的定义,会画 任意角的三角函数线;任意角的三角函数线;3. 利用单位圆比较三角函数值利用单位圆比较三角函数值 的大小,求角的范围的大小,求角的范围.)(tan)2tan(cos)2cos(sin)2sin(zkkkk
限制150内