2022年遗传算法源代码 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年遗传算法源代码 .pdf》由会员分享,可在线阅读,更多相关《2022年遗传算法源代码 .pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、这是一个非常简单的遗传算法源代码, 是由 Denis Cormier (North Carolina State University) 开发的, Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少, 实际上也不必查错。 对一特定的应用修正此代码,用户只需改变常数的定义并且定义“ 评价函数 ” 即可。注意代码的设计是求最大值,其中的目标函数只能取正值; 且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian 变异替换均匀变异,可能得到更好的效果。 代码
2、没有任何图形, 甚至也没有屏幕输出, 主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu, 目录 coe/evol 中的文件 prog.c 中获得。要求输入的文件应该命名为,gadata.txt?;系统产生的输出文件为,galog.txt?。输入的文件由几行组成:数目对应于变量数。且每一行提供次序对应于变量的上下界。 如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。/*/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function take
3、s positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */*/ #include #include #include /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */ #define MAXGENS 1000 /* max. number of generations
4、*/ #define NVARS 3 /* no. of problem variables */ #define PXOVER 0.8 /* probability of crossover */ #define PMUTATION 0.15 /* probability of mutation */ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. */ int cur_best; /* best individual */ FILE *galog; /* an output file */ s
5、truct genotype /* genotype (GT), a member of the population */ double geneNVARS; /* a string of variables */ 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 21 页 - - - - - - - - - double fitness; /* GTs fitness */ double upperNVARS; /* GTs variables upper bound
6、*/ double lowerNVARS; /* GTs variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */ ; struct genotype populationPOPSIZE+1; /* population */ struct genotype newpopulationPOPSIZE+1; /* new population; */ /* replaces the */ /* old generation */ /* Dec
7、laration of procedures used by this genetic algorithm */ void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void repo
8、rt(void); /*/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file gadata.txt. It rando
9、mly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file gadata.txt is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound . */ /*/ void initialize(void) FILE *infile; int i, j; double lbound, ubo
10、und; 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 21 页 - - - - - - - - - if (infile = fopen(gadata.txt,r)=NULL) fprintf(galog,nCannot open input file!n); exit(1); /* initialize variables within the bounds */ for (i = 0; i NVARS; i+) fscanf(infile, %lf,&lbound
11、); fscanf(infile, %lf,&ubound); for (j = 0; j POPSIZE; j+) populationj.fitness = 0; populationj.rfitness = 0; populationj.cfitness = 0; populationj.loweri = lbound; populationj.upperi= ubound; populationj.genei = randval(populationj.loweri, populationj.upperi); fclose(infile); /*/ /* Random value ge
12、nerator: Generates a value within bounds */ /*/ double randval(double low, double high) double val; val = (double)(rand()%1000)/1000.0)*(high - low) + low; return(val); /*/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */
13、/* The current function is: x12-x1*x2+x3 */ /*/ 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 21 页 - - - - - - - - - void evaluate(void) int mem; int i; double xNVARS+1; for (mem = 0; mem POPSIZE; mem+) for (i = 0; i NVARS; i+) xi+1 = populationmem.genei; popu
14、lationmem.fitness = (x1*x1) - (x1*x2) + x3; /*/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /*/ void keep_the_best() int mem; int i; cur_best = 0; /* sto
15、res the index of the best individual */ for (mem = 0; mem populationPOPSIZE.fitness) cur_best = mem; populationPOPSIZE.fitness = populationmem.fitness; /* once the best member in the population is found, copy the genes */ for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationcur_best.genei; /
16、*/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 21 页 - - - - - - - - - /* the current generation is worse then the best member o
17、f the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /*/ void elitist() int i; double best, worst; /* best and worst fitness values */ int best_mem, worst_mem; /* indexes of the best and worst member */ best = population0.fitness; worst =
18、population0.fitness; for (i = 0; i populationi+1.fitness) if (populationi.fitness = best) best = populationi.fitness; best_mem = i; if (populationi+1.fitness = worst) worst = populationi+1.fitness; worst_mem = i + 1; else if (populationi.fitness = best) best = populationi+1.fitness; best_mem = i + 1
19、; /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 21 页 - - - - - - - - - /* copy the best from the new population; else replace the */ /*
20、 worst individual from the current population with the */ /* best one from the previous generation */ if (best = populationPOPSIZE.fitness) for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationbest_mem.genei; populationPOPSIZE.fitness = populationbest_mem.fitness; else for (i = 0; i NVARS; i
21、+) populationworst_mem.genei = populationPOPSIZE.genei; populationworst_mem.fitness = populationPOPSIZE.fitness; /*/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /*/ void select(
22、void) int mem, i, j, k; double sum = 0; double p; /* find total fitness of the population */ for (mem = 0; mem POPSIZE; mem+) sum += populationmem.fitness; /* calculate relative fitness */ for (mem = 0; mem POPSIZE; mem+) populationmem.rfitness = populationmem.fitness/sum; population0.cfitness = pop
23、ulation0.rfitness; /* calculate cumulative fitness */ for (mem = 1; mem POPSIZE; mem+) 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 21 页 - - - - - - - - - populationmem.cfitness = populationmem-1.cfitness + populationmem.rfitness; /* finally select survivors
24、using cumulative fitness. */ for (i = 0; i POPSIZE; i+) p = rand()%1000/1000.0; if (p population0.cfitness) newpopulationi = population0; else for (j = 0; j = populationj.cfitness & ppopulationj+1.cfitness) newpopulationi = populationj+1; /* once a new population is created, copy it back */ for (i =
25、 0; i POPSIZE; i+) populationi = newpopulationi; /*/ /* Crossover selection: selects two parents that take part in */ /* the crossover. Implements a single point crossover */ /*/ void crossover(void) int i, mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年遗传算法源代码 2022 遗传 算法 源代码
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内