第28章锐角三角函数集体备课.doc
《第28章锐角三角函数集体备课.doc》由会员分享,可在线阅读,更多相关《第28章锐角三角函数集体备课.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-/阿瓦提县第四中学集体备课记录表备课组:九年级数学备课组课题: 281锐角三角函数(1)备课时间地点三楼多媒体室组长黄龙华教学目标1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)。2、能根据正弦概念正确进行计算重点理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值难点当直角三角形的锐角固定时,它的对边与斜边的比值是固定值教学方法讲解法、练习法课型新授课教学准备三角尺课时一课时集体备课教学设计思路个人修改意见一、复习引入:1、如图在RtABC中,C=90,A=30,BC=10m,求AB2、如图在RtABC中,C=90,A=30,AB
2、=20m,求BC二、合作交流:问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管? ; 如果使出水口的高度为a m,那么需要准备多长的水管? ;结论:直角三角形中,30角的对边与斜边的比值 思考2:在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,45角的对边与斜边的比值 三、教师点拨:从上面这两个问题的结论中可知,在一个RtABC中,
3、C=90,当A=30时,A的对边与斜边的比都等于,是一个固定值;当A=45时,A的对边与斜边的比都等于,也是一个固定值这就引发我们产生这样一个疑问:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画RtABC和RtABC,使得C=C=90,A=A=a,那么有什么关系你能解释一下吗? 结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比 正弦函数概念:规定:在RtBC中,C=90,A的对边记作a,B的对边记作b,C的对边记作c在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = si
4、nA例如,当A=30时,我们有sinA=sin30= ;当A=45时,我们有sinA=sin45= 四、学生展示:例1 如图,在RtABC中,C=90,求sinA和sinB的值 随堂练习 (1)、课本第77页练习随堂练习 (2):1三角形在正方形网格纸中的位置如图所示,则sin的值是 A B C D2如图,在直角ABC中,C90o,若AB5,AC4,则sinA( )A B C D3 在ABC中,C=90,BC=2,sinA=,则边AC的长是( )A B3 C D 4如图,已知点P的坐标是(a,b),则sin等于( )A B C五、课堂小结:在直角三角形中,当锐角A的度数一定时,不管三角形的大小
5、如何,A的对边与斜边的比都是 在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的 ,记作 。布置作业板书设计课后反思备课组:九年级数学备课组课题: 281锐角三角函数(2)备课时间地点数学组办公室组长教学目标1、感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定。2、逐步培养学生观察、比较、分析、概括的思维能力。重点理解余弦、正切的概念。难点熟练运用锐角三角函数的概念进行有关计算。教学方法讲解法、练习法课型新授课教学准备三角尺、圆规课时一课时集体备课教学设计思路个人修改意见EOABCD一、复习引入:1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt
6、ABC中,ACB90,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD3、如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= 4、在RtABC中,C=90,当锐角A确定时,A的对边与斜边的比是 ,现在我们要问:A的邻边与斜边的比呢? A的对边与邻边的比呢?为什么?二、合作交流:探究:一般地,当A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,B=B=,那么与有什么关系?三、教师点拨:类似于正弦的情况,如图在RtBC中,C=90,当锐角A的大小确定时,A的邻边与斜边的比、A
7、的对边与邻边的比也分别是确定的我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=例如,当A=30时,我们有cosA=cos30= ;当A=45时,我们有tanA=tan45= (教师讲解并板书):锐角A的正弦、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数例2:如图,在RtABC中,C=90,BC=6,sinA=,求cosA、tanB的值。四、学生展示:练习一:完成课本P78练习1、2、3练习二:1.在中,C90,
8、a,b,c分别是A、B、C的对边,则有() ABCD 本题主要考查锐解三角函数的定义,同学们只要依据的图形,不难写出,从而可判断C正确.2. 在中,C90,如果cos A=那么的值为() ABCD分析? 本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,从而,故应选D.3、如图:P是的边OA上一点,且P点的坐标为(3,4), 则cos_. 五、课堂小结:在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA把A的邻边与斜边的比叫做A的余弦,记作 ,即 把A的对边与邻边的比叫做A的正切,记作 ,即 布置作业板书设
9、计课后反思备课组:九年级数学备课组课题:281锐角三角函数(3)备课时间地点数学组办公室组长教学目标1、能推导并熟记30、45、60角的三角函数值,并能根据这些值说出对应锐角度数。2、能熟练计算含有30、45、60角的三角函数的运算式。重点熟记30、45、60角的三角函数值,能熟练计算含有30、45、60角的三角函数的运算式难点30、45、60角的三角函数值的推导过程教学方法讲解法、练习法课型新授课教学准备三角尺课时一课时集体备课教学设计思路个人修改意见一、复习引入:一个直角三角形中,一个锐角正弦是怎么定义的? 一个锐角余弦是怎么定义的? 一个锐角正切是怎么定义的? 二、合作交流:思考:两块三
10、角尺中有几个不同的锐角? 是多少度? 你能分别求出这几个锐角的正弦值、余弦值和正切值码? 三、教师点拨:归纳结果304560siaAcosAtanA例3:求下列各式的值 (1)cos260+sin260 (2)-tan45例4:(1)如图(1),在RtABC中,C=90,AB=,BC=,求A的度数 (2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a四、学生展示:一、课本80页 第1、2 题二、选择题1已知:RtABC中,C=90,cosA=,AB=15,则AC的长是( ) A3 B6 C9 D122下列各式中不正确的是( ) Asin260+cos260=1 Bsin30+co
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 28 锐角 三角函数 集体 备课
限制150内