线性代数学习笔记.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《线性代数学习笔记.doc》由会员分享,可在线阅读,更多相关《线性代数学习笔记.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-/线性代数笔记第一章 行列式1第二章 矩阵2第三章 向量空间3第四章 线性方程组5第五章 特征值与特征向量5第一章 行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。性质1 转置的行列式与原行列式相等。即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。可以证明:任意一个奇数阶反对称行列式必为零。性质3 行列式的两行(列)互换,行列
2、式的值改变符号。以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意 性质中是指某一行(列)而不是每一行。性质6 把行列式的某一行(列)的每个元素都乘以 加到另一行(列),所得的行列式的值不变。范德蒙德行列式例10 范德蒙行列式.=(x2-x1)(x3-x1)(x3-x2)1.4克莱姆法则定理1.4.1 对于n阶行列式定理1.4.2 如果n个未知数,n个方程的线性方程组的系数行列式D0,则方程组有惟一的解: 定理1.4.3
3、 如果n个未知数n个方程的齐次方程组的系数行列式D0,则该方程组只有零解,没有非零解。推论如果齐次方程组有非零解,则必有系数行列式D=0。第二章 矩阵一、矩阵的运算1、矩阵的加法设A=(aij)mn ,B=(bij)mn ,则A+B=(aij+bij)mn矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(aij)mn,0=0mn(4)矩阵A=(aij)mn,规定-A=(-aij)mn,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(aij)mn,K为数,则
4、KA=(Kaij)mn矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。)3、矩阵的乘法设A=(aij)mn,B=(bjk)nl,则A*B=C=(cik)ml其中C=aijbjk(j=1,n)注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换律,即AB不一定等于BA;矩阵乘法有零因子,即A0(零矩阵),B0(零矩阵),但有可能A*B=0(零矩阵)矩阵的乘法适合以下法则:(1)结合律:(AB)C=A(BC
5、)(2)分配律(A+B)C=AC+BC C(A+B)=CA+CB(3)k(AB)=(kA)B=A(kB),此处k是一个数。由于矩阵乘法的结合律,故对于方阵A来说,A的方幂是有意义的,即Ak=A*AA共k个A相乘,从而有(1)AkAl=Ak+l(2)(Ak)l=Akl(3)InA=AIn=A4、矩阵的转置将矩阵A的行变成列,列变成行得到的矩阵称为A的转置矩阵,记作AT或A/注意A是mn矩阵,则AT为nm矩阵矩阵的转置适合下列运算法则:(1)(AT)T=A(2)(A+B)T=AT+BT(3)(kA)T=kAT(4)(AB)T=BTAT5、方阵的逆矩阵设A,B为同阶可逆矩阵。常数k0。则1.可逆,且
6、。 AA-1=A-1A=E2.AB可逆,。3. 也可逆,且。 (A-1)k=(Ak)-14.kA也可逆,且。(注:K不能为0)5.消去律 设P是与A,B同阶的可逆矩阵,若PA=PB,则A=B。若a0,ab=ac则b=c。6.设A是n阶可逆方阵。定义 ,并定义。则有,其中k,l是任意整数。7.设A 是 n阶可逆方阵,则。2.3.1逆矩阵的定义定义2.3.1 设A是一个n阶方阵。若存在一个n阶方阵B使得。则称A是可逆矩阵,也称非奇异阵。并称。若这样的B不存在,则称A不可逆。定理2.3.1 可逆矩阵A的逆矩阵是惟一的。定理2.3.2 n阶方阵A可逆的充分必要条件是,且当时,。推论 设A,B均为n阶方
7、阵,并且满足AB=E,则A,B都可逆,且。2.4.1分块矩阵的概念对于行数列数较高的矩阵A,为运算方便,经常采用分块法处理。 即可以用若干条横线和竖线将其分成若干个小矩阵。每个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵。2.4.3几个特殊的分快矩阵的运算(1)准对角矩阵方阵的特殊分块矩阵形如的分块矩阵称为分块对角阵或准对角阵,其中,均为方阵。(2)两个准对角(分块对角)矩阵的乘积则(3)准对角矩阵的逆矩阵 若均为可逆阵。可逆,且。(4)准上(下)三角矩阵的行列式。可以证明(1)用初等行变换方法求逆矩阵时,不能同时用初等列变换!(2)在求矩阵的秩时,可以只用初等行变换,但也允许用
8、初等列变换,而且不必化成简化行阶梯形矩阵定义2.5.1(线性方程组的初等变换)称下列三种变换为线性方程组的初等变换。(1)两个方程互换位置;(2)用一个非零的数乘某一个方程;(3)把一个方程的倍数加到另一个方程上。显然,线性方程组经初等变换后所得的新方程组与原方程组同解。事实上,上述解线性方程组的过程,只要对该方程组的增广矩阵做相应的行变换即可。二、矩阵初等变换的定义定义2.5.2 分别称下列三种变换为矩阵的第一、第二、第三种行(列)初等变(1)对调矩阵中任意两行(列)的位置;(2)用一非零常数乘矩阵的某一行(列);(3)将矩阵的某一行(列)乘以数k后加到另一行(列)上去。把行初等变换和列初等
9、变换统称为初等变换。定义2.5.3如果一个矩阵A经过有限次的初等变换变成矩阵B,则称A与B等价,记为AB。等价具有反身性 即对任意矩阵A,有A与A等价;对称性 若A与B等价,则B与A等价传递性 若A与B等价,B与C等价,则A与C等价。三、矩阵的行最简形式和等价标准形简单地说,就是经过行初等变换可以把矩阵化成阶梯型,进而化成行最简形,而经过初等变换(包括行和列的)可以把矩阵化成等价标准形。阶梯形矩阵的定义:满足(1)全零行(若有)都在矩阵非零行的下方;(2)各非零行中从左边数起的第一个非零元(称为主元)的列指标j随着行指标的增加而单调地严格增加的矩阵称为阶梯形矩阵。(每个阶梯只有一行)行最简形式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 学习 笔记
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内