平面向量数量积运算主题材料(附答案解析).doc
《平面向量数量积运算主题材料(附答案解析).doc》由会员分享,可在线阅读,更多相关《平面向量数量积运算主题材料(附答案解析).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面向量数量积运算题型一平面向量数量积的基本运算例1(1)(2014天津)已知菱形ABCD的边长为2,BAD120,点E,F分别在边BC,DC上,BC3BE,DCDF.若1,则的值为_.(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么的最小值为()A.4 B.3C.42 D.32变式训练1(2015湖北)已知向量,|3,则_.题型二利用平面向量数量积求两向量夹角例2(1)(2015重庆)若非零向量a,b满足|a|b|,且(ab)(3a2b),则a与b的夹角为()A. B. C. D.(2)若平面向量a与平面向量b的夹角等于,|a|2,|b|3,则2ab与a2b的夹角的余
2、弦值等于()A. B. C. D.变式训练2(2014课标全国)已知A,B,C为圆O上的三点,若(),则与的夹角为_.题型三利用数量积求向量的模例3(1)已知平面向量a和b,|a|1,|b|2,且a与b的夹角为120,则|2ab|等于()A.2 B.4C.2 D.6(2)已知直角梯形ABCD中,ADBC,ADC90,AD2,BC1,P是腰DC上的动点,则|3|的最小值为_.变式训练3(2015浙江)已知e1,e2是平面单位向量,且e1e2.若平面向量b满足be1be21,则|b|_.高考题型精练1.(2015山东)已知菱形ABCD 的边长为a,ABC60,则等于()A.a2 B.a2C.a2
3、D.a2 2.(2014浙江)记maxx,yminx,y设a,b为平面向量,则()A.min|ab|,|ab|min|a|,|b|B.min|ab|,|ab|min|a|,|b|C.max|ab|2,|ab|2|a|2|b|2D.max|ab|2,|ab|2|a|2|b|23.(2015湖南)已知点A,B,C在圆x2y21上运动,且ABBC.若点P的坐标为(2,0),则|的最大值为()A.6 B.7C.8 D.94.如图,在等腰直角ABO中,OAOB1,C为AB上靠近点A的四等分点,过C作AB的垂线l,P为垂线上任一点,设a,b,p,则p(ba)等于()A. B.C. D.5.在平面上,|1,
4、.若|,则|的取值范围是()A.(0, B.(,C.(, D.(,6.如图所示,ABC中,ACB90且ACBC4,点M满足3,则等于()A.2 B.3C.4 D.67.(2014安徽)设a,b为非零向量,|b|2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1y1x2y2x3y3x4y4所有可能取值中的最小值为4|a|2,则a与b的夹角为()A. B. C. D.08.(2014江苏)如图,在平行四边形ABCD中,已知AB8,AD5,3,2,则的值是_.9.设非零向量a,b的夹角为,记f(a,b)acos bsin .若e1,e2均为单位向量,且
5、e1e2,则向量f(e1,e2)与f(e2,e1)的夹角为_.10.如图,在ABC中,O为BC中点,若AB1,AC3,60,则|_.11.已知向量a(sin x,),b(cos x,1).当ab时,求cos2xsin 2x的值;12.在ABC中,AC10,过顶点C作AB的垂线,垂足为D,AD5,且满足.(1)求|;(2)存在实数t1,使得向量xt,yt,令kxy,求k的最小值.平面向量数量积运算题型一平面向量数量积的基本运算例1(1)(2014天津)已知菱形ABCD的边长为2,BAD120,点E,F分别在边BC,DC上,BC3BE,DCDF.若1,则的值为_.(2)已知圆O的半径为1,PA,P
6、B为该圆的两条切线,A,B为切点,那么的最小值为()A.4 B.3C.42 D.32答案(1)2(2)D解析(1)如图,()()()()22cos 120222222cos 1202,又1,1,2.(2)方法一设|x,APB,则tan ,从而cos .|cos x2x21323,当且仅当x21,即x21时取等号,故的最小值为23.方法二设APB,0,则|.|cos ()2cos (12sin2).令xsin2,0x1,则2x323,当且仅当2x,即x时取等号.故的最小值为23.方法三以O为坐标原点,建立平面直角坐标系xOy,则圆O的方程为x2y21,设A(x1,y1),B(x1,y1),P(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 数量 运算 主题 材料 答案 谜底 解析
限制150内