《2022年高中物理奥赛讲义:质点的直线运动.docx》由会员分享,可在线阅读,更多相关《2022年高中物理奥赛讲义:质点的直线运动.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载高中物理奥赛讲义:质点的直线运动 内容综述 1质点是物理学引入的第一个抱负的模型;是科学的抽象;在争论物体平动时,物体各部分运动情形都相同,在争论其运动规律时,它的任何一点的运动,都可以代表整体的 运动,特殊是争论物体的范畴远大于物体的线度时,这时物体的大小、外形都无关紧要,可以把物体视为一个“ 有质量的点” 质点;2从匀速直线运动到匀变速直线运动的争论过程,表达了物理学的争论方法;加速度为零,速度恒定且不为零的运动是匀速直线运动,其速度 v=s/t ;变速直线运动的速度不断变化,需引入一些新的物理量来描述它;这就是平均速度、
2、(物体某段时间的 瞬时速度和加速度;应从中体会物理的争论方法、引入平均速度 位移 s 与所用时间 t 之比),实际就是把变速直线运动当作(以 为速度的)匀速直线运动 处理;这是等效方法的运用;等效的方法表达了用简洁的争论复杂的、用已知的争论未知的重要争论方法;平均速度在所选时间间隔趋于零的极限就是瞬时速度,即;进而引入表述速度变化快慢的物理量加速度:;在变速直线中,第一选定加速度恒定的匀速直线运动来争论,其运动的平均速度匀变速直线运动的基本公式有 速度公式 Vt=V0+at (1)位移公式或(2)(1)、( 2)两式消去 t 得 要点讲解 名师归纳总结 - - - - - - -第 1 页,共
3、 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载从匀变速直线运动可选用的四个公式看,公式中除时间t 外,其它均为矢量,常用正、负号来说明方向;四个公式共含五个物理量,有两个独立方程(公式),应用时需从题中 找到三个已知量(或关系),然后挑选入手公式解;图 1 是匀加速直线运动的vt 图线和匀减速直线运动的st 图线; st 图线的斜率表示速度; v t 图线的斜率表示加速度,图线与 可以帮忙分析解决问题;t 轴所围的面积值等于位移的大小,利用图线作直线运动的物体这种形式发生变化的问题,描述两个物体运动的“ 追及” 问题等,是解决质点作直线运动的习题对才能要求较高;例
4、题分析例 1 物体从静止开头,先以加速度a1作匀加速直线运动,接着以大小为a2 的加速度作匀减速运动,直到静止物体的点位移为s,求物体运动的总时间;分析与解答: 物体运动形式变化时的速度是联系前、后两不同形式运动唯独的物理量,设其为 V,无论是表达前、后两段运动的位移,正是表达时间,在选取用公式时都要把 V考虑在内;设前、后两阶段的位移和时间分别为S1、S2 和 t 1、t 2;依公式有例 2 同一平直轨道上有同方向匀速运动的前后两个物体,后面物体 2 的速度 V2 大于前面物体 1 的速度 V1;为了不相撞,在两物体相距为 加速度至少应多大?L 时物体 2 开头作匀减速运动,那么,它的分析与
5、解答: 依题画出草图以示题意是必要的,见图 2;并着意查找两物体的位移关系和时间关系(同时),其中位移关系:名师归纳总结 - - - - - - -第 2 页,共 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载可作为解题的切入点,最终两物体速度均为 行的时间(2)(1)式变为 引入( 2)式 得V1,这是题目的隐含条件,到相遇它们运说明: 此题也可以采纳相对运动的观点来解;即以物体 1 为参考物,物体 2 相对物体 1的速度为( V2-V1),作匀减速直线运动, 经位移 L 速度减为零(不是 V1),就,可直接获得结论;例 3 高 h 的电梯正以加速度a 匀加速上升
6、,突然电梯的天花板有一螺钉脱落,螺钉落到电梯底板所用的时间为 _;分析与解答: 画出示意图,如图 而不是自由落体运动;h2-h1=h 得3 所示;应留意到螺钉脱落后,是作竖直上抛运动,名师归纳总结 说明: 如以电梯为参照物(认为v=0),螺钉相对电梯的加速度为(g+a)(具体第 3 页,共 7 页见“ 相对运动” 部分),这样可直接求出;- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载例 4 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度都是 v0;如前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开头刹车;已知前车过程中所
7、行的距离为S,如要保证两辆车在上述情形中不相撞,就两车在匀速行时保持的距离至少多大了?分析与解答:介绍三种解法?解法一: 留意到前后两车先后刹车的初速度都是V0,加速度相同,最终停下的末速度都是零;因此两车刹车过程所用时间 t 和位移 S 都相同题中已知 v0、s,所以();同时可以判定出,只要后车也在前车刹车的位置开头刹车,两车就恰不相撞;因此,原先两车的距sx就是在前车刹车的时间内,后车匀速行驶的距离,就解法二: 设两车匀速行驶时至少相距 sx;由于前车刹车到停,两车距离将缩短 s1;又由于前车停下后车刹车减速到停下,两车距离又缩短 s2,且依解法一的分析可知 s2=s,依题知 L= s
8、1 + s 2= s 1+s (1)又 s 1= v 0t-s (2)式中 t 是前车减速到停下所用的时间,由,得,所以( 2)式中s1=s,( 1)式 L=2S;解法三: 用 v t 图像解,图4 中( a)、( b)分别是前、后车的vt 图像,都是从前车开头刹车时开头计时的;结合上面解法的分析,也可得到同样的结论;例 5 小球 1 从高 h 处自由落下,同时从其正下方的地面上,以速度 v0 竖直上抛小球 2;试就( 1)小球 2 在上升过程中;(2)小球 2 在下落过程中与小球 1 在空中相遇,分别争论 v0的取值范畴;分析与解答:两球在空中相遇, 它们位移的算数和等于 h,即名师归纳总结
9、 - - - - - - -第 4 页,共 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载得说明无论小球 2 是上升过程仍是返回过程与小球 1 在空中相遇,所用时间 t 的表达式均为( 1)式;当然 t 的大小取决于 v0的取值;小球 2 上升到最高点所用时间 t 上及到返回抛出点全程所用时间 T(=2t 上)分别为,(1)小球 2 上升过程中与小球1 相遇,有 t t上,得(2)小球 2 返回过程中与小球上在空中相遇,有t上tT 得1求证:作匀变速直线运动的物体;(1)连续相同时间间隔的位移之差等于常量;(2)某段时间的平均速度等于它在这段时间中间时刻的瞬时速度;
10、2从四楼阳台竖直上抛一小球,小球达五楼阳台时的速度是小球返回达三楼阳台时速度大小的一半;求小球抛出的速度;已知相邻阳台间的高度差为 h;3甲、乙两物体同时、同地沿同一方向运动,甲以速度 开头作加速度为 a 的匀加速直线运动;求:(1)两物体再次相遇所用的时间;(2)再次相遇前两物体之间的最大距离;4长 L 的列车沿平直轨道作匀加速直线运动,并通过长为V 作匀速直线运动,乙从静止2L 的桥;已知车头通过桥名师归纳总结 头和桥尾时的速度分别是V1和 V2;那么,列车全部通过桥时的速度V 多大?第 5 页,共 7 页- - - - - - -精选学习资料 - - - - - - - - - 5飞机起
11、飞离开跑道后,学习必备欢迎下载Vyt 图像如图5 所示,其速度的竖直方向的重量Vy 随时间变化的飞机上升的最大高度为 _;参考答案1证:依题作示意图(图6);所选定的相同时间间隔为T;(1)( vB-v A=aT)式中加速度 a、T 均为常量;得证;(2)从 A 到 C这 2T 时间的平均速度,或又 v C=vB+aT,v A=vB-aT,v B=vn 得证;2名师归纳总结 简解:依竖直上抛运动的对称性特点,可视为小球从五楼阳台以速度v 的竖直下抛运第 6 页,共 7 页动,依题小球达三楼阳台时的速度为2v,有(2v)2=v2+2g 2h,- - - - - - -精选学习资料 - - - - - - - - - 3( 1)(2)学习必备欢迎下载简解: S=v甲-v乙s=0,可得t 1=0(舍);(1)甲、乙再次相遇,说明(2)为使 s最大,应有, s 最大为4简解:列车全部过桥时,车头从通过桥头到此时前进取L,设列车加速度为a,参看图7,有;(1);(2)两式相减:510000m 提示:图线所围的面积;名师归纳总结 - - - - - - -第 7 页,共 7 页
限制150内