2022年高中数学知识点总结大全-------:空间向量与立体几何.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年高中数学知识点总结大全-------:空间向量与立体几何.docx》由会员分享,可在线阅读,更多相关《2022年高中数学知识点总结大全-------:空间向量与立体几何.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 高中数学学问点总结 空间向量与立体几何 一、考点概要: 1、空间向量及其运算1空间向量的基本学问:定义:空间向量的定义和平面对量一样,那些具有大小和方向的量叫做向量,并且仍用有向线 段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量;空间向量基本定理:定理:假如三个向量不共面,那么对于空间任一向量,存在唯独的有序实数组x、y、z,使;且把叫做空间的一个基底,都叫基向量;正交基底:假如空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底; 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常
2、用表示; 空间四点共面:设O、A、B、C 是不共面的四点,就对空间中任意一点P,都存在唯独的有序实数组 x、y、z,使;共线向量平行向量 :定义: 假如表示空间向量的有向线段所在的直线相互平行或重合,就这些向量叫做共线向量或平行向量,记作;规定:零向量与任意向量共线;共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使;共面对量:定义: 一般地,能平移到同一平面内的向量叫做共面对量;空间的任意两个向量都是共面对量;向量与平面平行: 假如直线 OA 平行于平面或在 内,就说向量平行于平面 ,记作;平行于同一平面的向量,也是共面对量;共面对量定理: 假如两个向量、 不共线,就向量与向量、
3、共面的充要条件是: 存在实数对 x、y,使;、都是非零向量时,共面对量定理实际上也是、空间的三个向量共面的条件:当所在的三条直线共面的充要条件,但用于判定时,仍需要证明其中一条直线上有一点在另两条直线所确定的平面内;名师归纳总结 共面对量定理的推论: 空间一点 P 在平面 MAB 内的充要条件是:存在有序实数对x、y,使得,或对于空间任意肯定点O,有;第 1 页,共 16 页- - - - - - -精选学习资料 - - - - - - - - - 空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,两个向量的起点肯定要相同 ,就叫做向量与的夹角,记作,且;两个向量的数量积:即:定义:
4、已知空间两个非零向量、,就叫做向量、的数量积,记作,;0;规定:零向量与任一向量的数量积为留意:两个向量的数量积也叫向量、的点积或内积,它的结果是一个实数,它等于两向量的模与其夹角的余弦值;数量积的几何意义:叫做向量在方向上的投影其中 为向量和的夹角;即:数量积等于向量的模与向量在方向上的投影的乘积;基本性质:运算律:2空间向量的线性运算:定义:与平面对量运算一样,空间向量的加法、减法与数乘向量运算如下:名师归纳总结 加法:减法: 加 法 交换律 :加法 结 合 律 : 数乘向量: 运 算 律:第 2 页,共 16 页- - - - - - -精选学习资料 - - - - - - - - -
5、数乘安排律:二、复习点睛:1、立体几何初步是侧重于定性讨论,而空间向量就侧重于定量讨论;空间向量的引入,为解决三维空间中图形的位置关系与度量问题供应了一个非常有效的工具;2、依据空间向量的基本定理,显现了用基向量解决立体几何问题的向量法,建立空间直角坐标系,形成了用空间坐标讨论空间图形的坐标法,它们的解答通常遵循“ 三步 ”:一化向量问题,二进行向量运算,三回到图形问题;其实质是数形结合思想与等价转化思想的运用;3、实数的运算与向量的运算既有联系又有区分,向量的数量积满意交换律和安排律,但不满意结合律,因此在进行数量积相关运算的过程中不行以随便组合;值得一提的是:完全平方公式和平方差公式仍旧适
6、用,数量积的运算在很多方面和多项式的运算如出一辙,特别去括号就显得更为突出,下面两个公式较为常用,请务必记住并学会应用:;2、空间向量的坐标表示:1空间直角坐标系:空间直角坐标系 O-xyz,在空间选定一点 O 和一个单位正交基底,以点 O 为原点,分别以 的方向为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫做坐标轴,点 O 叫做原点,向量 叫做坐标向量, 通过每两个坐标轴的平面叫做坐标平面,分别称为 xOy 平面,yOz 平面,zOx平面;右手直角坐标系: 右手握住 z 轴,当右手的四指从正向x 轴以 90 角度转向正向y 轴时,大拇指的指向就是 z 轴的正向;构成元素:点原点 、
7、线 x、y、z 轴、面 xOy 平面, yOz 平面, zOx 平面;空间直角坐标系的画法:作空间直角坐标系 O-xyz 时,一般使 xOy=135 或 45, yOz=90,z 轴垂直于 y 轴, z 轴、y 轴的单位长度相同, x 轴上的单位长度为 y 轴或 z 轴的一半; 2空间向量的坐标表示:名师归纳总结 已知空间直角坐标系和向量,且设为坐标向量如图 ,第 3 页,共 16 页- - - - - - -精选学习资料 - - - - - - - - - 由空间向量基本定理知,存在唯独的有序实数组;叫做向量在此直角坐标系中的坐标,记作在空间直角坐标系O-xyz 中,对于空间任一点A,对应一
8、个向量,假设,就有序数组 x, y, z叫做点在此空间直角坐标系中的坐标,记为Ax ,y,z,其中 x 叫做点 A 的横坐标, y 叫做点 A 的纵坐标, z 叫做点 A 的竖坐标,写点的坐标时,三个坐标间的次序不能变;空间任一点的坐标的确定:过 P 分别作三个与坐标平面平行的平面或垂面,分别交坐标轴于A、B、C 三点, x = OA, y = OB, z = OC,当 与 的方向相同时, x0,当 与的方向相反时, x0,同理可确 y、z如图;规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应;一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐
9、标减去起点的坐标;设,就:3空间向量的直角坐标运算:空间两点间距离:;名师归纳总结 - - - - - - -第 4 页,共 16 页精选学习资料 - - - - - - - - - 空间线段的中点 M x,y,z的坐标:;球面方程:二、复习点睛:4、过定点 O,作三条相互垂直的数轴,它们都以 O 为原点且一般具有相同的长度单位;这三条轴分别叫做 z 轴横轴、y 轴纵轴、z 轴竖轴;统称坐标轴;通常把 x 轴和 y 轴配置在水平面上,而z 轴就是铅垂线; 它们的正方向要符合右手规章, 即以这样的三条坐标轴就组成了一个空间直角坐标系,点 O 叫做坐标原点;5、空间直角坐标系中的特别点 : 1点原
10、点的坐标: 0,0,0;2线坐标轴上的点的坐标:x 轴上的坐标为 x,0,0,y 轴上的坐标为 0,y,0,z 轴上的坐标为0,0,z;3面 xOy 平面、 yOz 平面、 zOx 平面内的点的坐标:平面上的坐标为x,y,0、平面上的坐标为0,y,z、平面上的坐标为 x,0,z 6、要使向量与 z 轴垂直,只要 z=0 即可;事实上,要使向量与哪一个坐标轴垂直,只要向量的相应坐标为 0 即可;7、空间直角坐标系中,方程 x=0 表示 yOz 平面、方程 y=0 表示 zOx 平面、方程 z=0 表示 xOy 平面,方程 x=a 表示平行于平面 yOz 的平面、方程 y=b 表示平行于平面 面
11、xOy 平面;zOx 的平面、方程 z=c 表示平行于平8、只要将和代入,即可证明空间向量的运算法就与平面对量一样;9、由空间向量基本定理可知,空间任一向量均可以由空间不共面的三个向量生成任意不共面的三个向量 都可以构成空间的一个基底,此定理是空间向量分解的基础;立体几何中的向量方法1空间向量的坐标表示及运算 1数量积的坐标运算 设 aa1,a2,a3,bb1,b2,b3,就aba1b1,a2b2,a3b3; a a1, a2, a3;aba1b1a2b2a3b3. 2共线与垂直的坐标表示 设 aa1,a2,a3,bb1,b2,b3,就 a b. a b. a1 b 1,a2 b2, a3 b
12、 3R,ab. ab0. a1b1a2b2a3b30a,b 均为非零向量 3模、夹角和距离公式 设 aa1,a2,a3,bb1,b2,b3,就|a|aaa21a22a23,第 5 页,共 16 页名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - cosa,bab |a|b|a21a22a23a1b1 a2b2a3b3 b21b22b23. 设 Aa1,b1,c1,Ba2,b2,c2,就 dAB|AB |a2a1 2 b2b1 2 c2c1 2. 2立体几何中的向量方法 1直线的方向向量与平面的法向量的确定直线的方向向量: l 是空间始终线, A,B 是直
13、线 l 上任意两点,就称 AB 为直线 l 的方向向量, 与AB 平行的任意非零向量也是直线 l 的方向向量平面的法向量可利用方程组求出:设向量的方程组为na0,nb0.2用向量证明空间中的平行关系a,b 是平面 内两不共线向量, n 为平面 的法向量,就求法设直线 l 1和 l2 的方向向量分别为 v1 和 v2,就 l1 l2或 l1 与 l2 重合 . v 1 v 2. 设直线 l 的方向向量为 v,与平面 共面的两个不共线向量 x,y,使 vxv 1yv 2. v 1 和 v 2,就 l 或 l. . 存在两个实数设直线 l 的方向向量为 v ,平面 的法向量为 u,就 l 或 l.
14、. vu. 设平面 和 的法向量分别为 u1,u2,就 . u1 u2. 3用向量证明空间中的垂直关系设直线 l1和 l2的方向向量分别为v1 和 v2,就 l1l2. v 1v2. v 1v20. 设直线 l 的方向向量为 v ,平面 的法向量为 u,就 l. v u. 设平面 和 的法向量分别为 u1 和 u2,就 . u1u 2. u1u20. 4点面距的求法如图,设 AB 为平面 的一条斜线段, n 为平面 的法向量,就 B 到平面 的距离 d|AB n| |n| . 一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面对量定理和空间向量基本定理的进一步深化和标准
15、,是对向量大小和方向的量化:1以原点为起点的向量,其终点坐标即向量坐标;2向量坐标等于向量的终点坐标减去其起点坐标名师归纳总结 - - - - - - -第 6 页,共 16 页精选学习资料 - - - - - - - - - 得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,运算空间成角和距离等问题三种方法 主要利用直线的方向向量和平面的法向量解决以下问题:直线与直线平行 1平行 直线与平面平行 平面与平面平行直线与直线垂直 2垂直 直线与平面垂直 平面与平面垂直3点到平面的距离求点到平面距离是向量数量积运算 求投影 的详细应用,也是求异面直线之间距离,直线与平面距离和平面与平面
16、距离的基础双基自测1两不重合直线 l1和 l2的方向向量分别为v11,0,1,v22,0,2,就 l1与 l2的位置关系是 A平行B相交C垂直D不确定解析v 22v 1,v 1 v 2. 答案A 2已知平面 内有一个点 M1, 1,2,平面 的一个法向量是 内的是 BP2,0,1 AP2,3,3 n6, 3,6,就以下点 P 中在平面CP4,4,0 DP3, 3,4 第 7 页,共 16 页解析n6,3,6是平面 的法向量,nMP ,在选项 A 中, MP 1,4,1,nMP 0. 答案A 32022 唐山月考 已知点 A,B,C平面 ,点 P.,就AP AB 0,且AP AC 0 是AP B
17、C 0 的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - 解析由 AB 0,得 AP AB AC 0,AP AC 0即AP CB 0,亦即 AP BC 0,反之,假设 AP BC 0,就AP AC AB 0. AP AB AP AC ,未必等于 0. 答案 A 4人教 A 版教材习题改编 已知 a2, 3,1,b2,0,4,c4,6,2,就以下结论正确的选项是 Aa c,b c Ba b,acCa c,ab D以上都不对解析c4,6,222,3,12a,a c,又 ab2 23 01 40
18、,ab. 答案 C 52022 舟山调研 已知AB 2,2,1,AC 4,5,3,就平面 ABC 的单位法向量是 _解析 设平面 ABC 的法向量 nx,y,zAB n0,2x2yz0,就 即AC n0,4x5y3z0.令 z1,得 x1 2,n1 2, 1,1 ,平面 ABC 的单位法向量为|n| ny 1,1 3, 2 3,2 3 . 答案1 3, 2 3,2考向一 利用空间向量证明平行问题【例 1】 .如下图,在正方体 ABCD -A1B1C1D1 中,M 、N 分别是 C1C、B1C1 的中点求证: MN 平面A1BD. 审题视点 直接用线面平行定理不易证明,考虑用向量方法证明证明法一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 知识点 总结 大全 空间 向量 立体几何
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内