《2022年高数期末考试复习题.docx》由会员分享,可在线阅读,更多相关《2022年高数期末考试复习题.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载高数下 -章节复习一 解析几何 向量的内积外积运算,几何意义例填空已知a,1b1,2 ,a ,b夹角为4,求ab时,两向量垂直,当x,y满意例填空设ax,2 ,b1 ,y3,当x,y满意时,两向量平行;例证明设平面与两个向量a3 ij,bij4k平行,证明向量c2 i6jk与平面垂直;直线方程的运算例解答0求过点M,1,11,且与直线L2x3 yz60平行的直线方程M0,在平面上求一4x2y3 z90例解答求过点,02 ,4,且平行于平面x52z1,y3z2的直线方程;已知直线x57y14z例解答和平面3xy2z50的交点为4
2、条过M且和已知直线垂直的直线方程平面方程的运算例 证 明证 明 直 线xx0yny 0zpz 0落 在 平 面AxByCzD0的 充 要 条 件 是mAmBnCp0且Ax0By0Cz0D0y11z的平面方程例解答求过直线xy1z2且平行于直线x110112夹角(向量的夹角)例AB,1,1 0,AC0 1,1,就两向量之间的夹角为,以两向量为邻边的平行四边形的面积为距离(点到点,点到面,面到面,点到线)例填空已知两点p 14,21,p23 0,2,就p 1p2= 例解答求点2 1,1,到平面xyz10的距离求旋转面方程,二次曲线,二次曲面的投影名师归纳总结 例填空曲面x2y2z21是由()绕()
3、轴旋转而成第 1 页,共 8 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载二 二元函数极限,求导求极限例解答limx 0y 0sinx3xy2x2y2二元函数偏导数,二阶偏导数,全微分例填空函数zfx ,y在点连续是它在该点偏导数存在的z条件xy例填空设uxyy,就2uzxy2例解答zex 2y2,求 dzzfx,xy,求z , xz例解答已知yy例解答设zx3xyey,就2zxyzxyxfu,uy,证明xzy例证明已知xxy隐函数求导例解答z2xsinyz01,求zz , xzy,求例解答sinzx2yzx参数方程求导应用,曲线的切向量,曲
4、面的法向量,方向导数和梯度,极值名师归纳总结 例解答求曲面x2y22z20在点,11,1处的切平面和法线方程第 2 页,共 8 页例解答求曲面x2y2 yzxyz6在,1,22处的切平面和法线例解答求曲线3y5 z2x4在点1 1, 1,处的切线和法平面y22 z3xx2例解答求fx ,y2xy在条件x24y21下的最大和最小值例填空函数z2x2y2在点1 1,处的梯度为例 函数fx ,yx2y3在1 1,处沿()方向函数值变化最快A 2 3,B,10C1,1D3 ,2- - - - - - -精选学习资料 - - - - - - - - - 例解答求函数zx2y2在点p0,12学习必备欢迎下
5、载,223的方向导数处,沿p 到点p 1名师归纳总结 - - - - - - -第 3 页,共 8 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载三 二,三重积分二重积分的直角坐标系法(挑选积分次序,转变积分次序)例解答2 2 dx04x22x2y2dy,1dx1fx,ydy例填空交换积分次序2 0dyy 1 2yfdx0x例解答运算1 0 dyyy 2x e2y2dx,极坐标法,对称性例解答Dx ,y1x2y22 e,运算lnx2y2dD例解答ydxdy,D:x2y21x ,y0x,10y1, a2b2D例 设 D 为椭圆域x2y21,就dxdy49DA.12B.10
6、C.6D.36例D 1x,y1x,1 0y1,D2I1sinxcosyx2d,I2x2d,就I1, I2的关系为D 11D 2DI105.I2AI1I2BI2I2CI14I2三重积分的投影法,切片法,球坐标法,对称性名师归纳总结 例设有2空间闭区域1x ,y ,zx2y2z22 R,z0, 第 4 页,共 8 页2x ,y,zx2y22 zR2,x,0y,0z0,就有A xdV4xdVB ydV4ydVC 1212zdV4zdVD xyzdV4xyzdV例填空1212设是x2y2z2R2围成的有界区域,就dv例解答运算xy2dv,为zx2y2与z1围成例解答求zx2y2,z4围成立体的体积-
7、- - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载四 线面积分第一类曲线积分变定积分,第一类曲面积分变二重积分例填空设 L 为yx3上点0 ,0到点1,1的一段弧,就ydsL例解答xyds, L 为连接,10,1,0两点的直线段L例填空设 l 为yx3上点00,到1,1的一段弧,就yds化为定积分为l例解答设 l 为折线段 BOA ,B0 1,O,00,A,10,运算xydsl例解答y2ds, l 为摆线的一拱2xatsint0,t2x,yx2y,求其质量ya1cos tl例解答求zx2y 2被z22x割下部分曲面的面积例解答已知平面薄片D 由yx及直线
8、yx围成,面密度为例解答已知一平面薄片D 为x2x ,yx2y2,求其质量y2,1x0,y0,面密度例解答运算xyzds,为x0 ,y0 ,z0和xyz1围成四周体的整个边界例填空xyzdS,其中为球面x2y2z2a2其次类曲线积分变定积分,格林公式,积分与路径无关,全微分求积例填空c 为沿x2y2r2逆时针方向一周, 就利用格林公式将x2ydx2 xydy化为极坐标的二c重积分为例解答运算y2dx, L 为点Aa ,0沿 x 轴到点Ba0,的直线段L例解答运算cxdyydx, c 为x2y122的逆时针方向A,10到B0,1的半圆2x2y2例解答求ux,y使得dux,y2xydxx2dydy
9、,其中 L 是从点2 xex2sinex2cosyx4例解答求ydxLy1x21x1其次类曲面积分变二重积分,高斯公式名师归纳总结 例解答运算向量A3 xiy3j3 zk穿过曲面:x2y2z2a2流向外侧的流量第 5 页,共 8 页例解答运算x2y2dxdy,为x22 y2 R的下侧z0- - - - - - -精选学习资料 - - - - - - - - - 例解答运算xydxdyyz学习必备,欢迎下载y21,z0 z3围成的整个边界的xdydz为x2外侧名师归纳总结 例 解 答计 算8 y1dydz21y2dzdxx4yzdxdy,R为zox平 面 上 曲 线 段第 6 页,共 8 页zx
10、211z3绕 z 轴旋转一周得到的曲面的下侧2y2z22的外侧x3dydz3 ydzdxz3dxdy,其中为例解答例 向量场Ay2ixyjxzk的散度是A0 B2y+z C x+y D2x - - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载五 级数一般级数的发散判定正项级数的比较法(极限形式),比值法n例解答 判定级数 3 nn . 的敛散性n 1 n例解答 判定级数 ln 1 nn 的敛散性n 1 2例解答 n 的敛散性是n 1 n 3 n 1交叉级数的肯定收敛和条件收敛例以下级数肯定收敛的是 n nA. 1B. n 2C. 12 D. 12n 1
11、 n n 1 n 1n 3 n 1 n例填空 设 a 0,就 1 n1 cos a 的收敛性为n 1 n例解答 判定级数 1 n 1 1 是否收敛,如收敛,是肯定仍是条件收敛n 1 n例解答 判定级数 1 n 1 是否收敛,如收敛,是肯定仍是条件收敛n 1 ln 1 n例 级数 sin2 nx 是n 0 nA.发散 B.肯定收敛 C. 条件收敛 D.无法判定幂级数的收敛域,和函数例填空例解答例解答n1n nx 32n的收敛半径为求n0n11x2n的收敛域求幂级数n02n1x2n1的收敛域n函数间接法绽开为幂级数名师归纳总结 例解答将函数fxex绽开为 x 的幂级数,并且求收敛域第 7 页,共 8 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载1例解答 将 f x 2 绽开为 x 的幂级数,并指出其收敛域1 x例解答 将函数 f x 1 绽开为 x 2 的幂级数,并且指出收敛域5 x周期函数(延拓)绽开为傅里叶级数名师归纳总结 例解答将函数fx ,x绽开为傅里叶级数ax 2,xn0,写出它的傅里第 8 页,共 8 页例解答函数fx的周期为 2,在一个周期内的表达式为fx,0 0x叶级数中系数a , nbn详细积分表达式和它的和函数的表达式n,系数b2,xx0绽开为傅里叶级数时,系数例填空函数fx, 0- - - - - - -
限制150内