2022年高中数学必修统计与概率 .pdf
《2022年高中数学必修统计与概率 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学必修统计与概率 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 统计1:简单随机抽样(1)总体和样本在统计学中 , 把研究对象的全体叫做总体把每个研究对象叫做个体把总体中个体的总数叫做总体容量为了研究总体的有关性质,一般从总体中随机抽取一部分:,研究,我们称它为样本其中个体的个数称为样本容量(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。(3)简单随机抽样常用的方法:抽签法随机数表法计算机模拟法使
2、用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。(4)抽签法 : 给调查对象群体中的每一个对象编号;准备抽签的工具,实施抽签;对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样) :把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。K(抽样距离) =N(总体规模) /n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次
3、样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。名师资料总结 - - -精品资料欢迎下载 - -
4、 - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 2 两种方法:先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。(2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准:以调查所要分析和研究的主要变量或相关的变量作为分层的标准。以保证各层内部同质性强、各层之间异质性强、突出总
5、体内在结构的变量作为分层变量。以那些有明显分层区分的变量作为分层变量。(3)分层的比例问题:抽样比=样本容量各层样本容量个体容量各层个体容量按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。类别共同点各自特点相互关系适用范围简 单 随 机抽样抽 样 过 程 中每 个 个 体 被抽 取 的 机 会相等
6、从总体中逐个抽取总体中的个体数较少系统抽样将总体均匀分成几部分,按事先确定的规则在各部分抽取再起时部分抽样时采用简单随机抽样总体中的个数较多分成抽样经总体分成几层,分层进行抽取各层抽样时采用简单随机抽样总体由差异明显的几部分组成4:用样本的数字特征估计总体的数字特征(1)样本均值:nxxxxn21(2)样本标准差:nxxxxxxssn222212)()()(用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - -
7、- - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 3 虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。(3)众数:在样本数据中,频率分布最大值所对应的样本数据(可以是多个)。(4)中位数:在样本数据中,累计频率为1.5 时所对应的样本数据值(只有一个) 。注意:如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k 倍一组数据中的最大值和最
8、小值对标准差的影响,区间)3,3(sxsx的应用;“去掉一个最高分,去掉一个最低分”中的科学道理5:用样本的频率分布估计总体分布1:频率分布表与频率分布直方图频率分布表盒频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,它可以使我们看到整个样本数据的频率分布情况。具体步骤如下:第一步:求极差,即计算最大值与最小值的差. 第二步:决定组距和组数:组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准.太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多.一般来说,容量不超过100 的组数在
9、5 至 12之间 .组距应最好“取整” ,它与组距极差有关 . 注意:组数的“取舍”不依据四舍五入,而是当组距极差不是整数时,组数 =组距极差+1. 频率分布折线图:连接频率分布直方图中各个小长方形上端的重点,就得到频率分布折线图。总体密度曲线:总体密度曲线反映了总体在各个范围内取值的半分比,它能给我们提供更加精细的信息。2:茎叶图:茎是指中间的一列数,叶是指从茎旁边生长出来的数。例:例如:为了了解某地区高三学生的身体发育情况,抽查了地区内 100 名年龄为 17.518岁的男生的体重情况,结果如下(单位:kg). 56.5 69.5 65 61.5 64.5 76 71 66 63.5 56
10、 66.5 64 64.5 76 58.5 59.5 63.5 65 70 74.5 72 73.5 56 67 70 68.5 64 55.5 72.5 66.5 57.5 65.5 68 71 75 68 76 57.5 60 71.5 62 68.5 62.5 66 59.5 57 69.5 74 64.5 59 63.5 64.5 67.5 73 68 61.5 67 68 63.5 58 55 72 66.5 74 63 59 65.5 62.5 69.5 72 60 55.5 70 64.5 58 64.5 75.5 68.5 64 62 64 70.5 57 62.5 65 65
11、.5 58.5 67.5 70.5 65 69 71.5 73 62 58 66 66.5 70 63 59.5 试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计. 解:按照下列值的差(1)求最大值与最小计 .在上述数据中,最大值是76,最小值是 55,极差是 7655=21. (2)确定组距与组数 .如果将组距定为 2,那么由 212=10.5,组数为 11,这个组数适合的 .于是组距为名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 7 页 - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学必修统计与概率 2022 年高 数学 必修 统计 概率
限制150内