中考数学 动点问题专项训练讲解.doc
《中考数学 动点问题专项训练讲解.doc》由会员分享,可在线阅读,更多相关《中考数学 动点问题专项训练讲解.doc(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2010年中考动点问题汇编 (供中考复习选用)一、选择题1(2010重庆市潼南县)如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿FH方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与 x之间函数关系的图象是( )【答案】B 2(2010江苏宿迁)如图,在矩形ABCD中, AB=4,BC=6,当直角三角板MPN 的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点QBP=x,CQ=y
2、,那么y与x之间的函数图象大致是MQDCBPNA(第8题)xyO463AxyO2.2563DxyO364C2.25xyO63B【答案】D 3(2010湖北鄂州)如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上, 点在OA上,且点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是( )ABC4D6【答案】A 二、填空题1(2010 浙江义乌)(1)将抛物线y12x2向右平移2个单位,得到抛物线y2的图象,则y2= ; (2)如图,P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点A、B若ABP是以点A或点B为直角
3、顶点的等腰直角三角形,求满足条件的t的值,则t Pyx【答案】(1)2(x2)2 或 (2)3、1、2(2010浙江金华)如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是上的一个动点,连结OP,并延长OP交线段BC于点K,过点P作O的切线,分别交射线AB于点M,交直线BC于点G. 若,则BK .AODBFKE(第16题图)GMCK【答案】, 3(2010江西)如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为 (14题)【答案】64(2010 四川成都)如图,在中,动点从点开始沿边向以的速度移动(不与点重合),动点从点开始沿边
4、向以的速度移动(不与点重合)如果、分别从、同时出发,那么经过_秒,四边形的面积最小【答案】35(2010 四川成都)如图,内接于O,是O上与点关于圆心成中心对称的点,是边上一点,连结已知,是线段上一动点,连结并延长交四边形的一边于点,且满足,则的值为_【答案】1和6(2010广西柳州)如图8,AB是O的直径,弦BC=2cm,F是弦BC的中点,ABC=60若动点E以2cm/s的速度从A点出发沿着ABA方向运动,设运动时间为t(s)(0t3),连结EF,当t值为_s时,BEF是直角三角形FEOACB【答案】1或1.75或2.25三、解答题1(2010江苏苏州) (本题满分9分)刘卫同学在一次课外活
5、动中,用硬纸片做了两个直角三角形,见图、图中,B=90,A=30,BC=6cm;图中,D=90,E=45,DE=4 cm图是刘卫同学所做的一个实验:他将DEF的直角边DE与ABC的斜边AC重合在一起,并将DEF沿AC方向移动在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合) (1)在DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐 (填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步地研究,编制了如下问题: 问题:当DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行? 问题:当DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、B
6、C的长度为三边长的三角形是直角三角形? 问题:在DEF的移动过程中,是否存在某个位置,使得FCD=15?如果存在, 求出AD的长度;如果不存在,请说明理由 请你分别完成上述三个问题的解答过程【答案】2(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重
7、叠部分的面积;若改变,请说明理由.CDBAEO【答案】(1)由题意得B(3,1)若直线经过点A(3,0)时,则b若直线经过点B(3,1)时,则b若直线经过点C(0,1)时,则b1若直线与折线OAB的交点在OA上时,即1b,如图25-a,图1 此时E(2b,0)SOECO2b1b若直线与折线OAB的交点在BA上时,即b,如图2图2此时E(3,),D(2b2,1)SS矩(SOCDSOAE SDBE ) 3(2b1)1(52b)()3()(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。本题答案由无锡市天一
8、实验学校金杨建老师草制!图3由题意知,DMNE,DNME,四边形DNEM为平行四边形根据轴对称知,MEDNED又MDENED,MEDMDE,MDME,平行四边形DNEM为菱形过点D作DHOA,垂足为H,由题易知,tanDEN,DH1,HE2,设菱形DNEM 的边长为a,则在RtDHM中,由勾股定理知:,S四边形DNEMNEDH矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为3(2010甘肃兰州)(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,
9、该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0t3),直线AB与该抛物线的交点为N(如图2所示). 当时,判断点P是否在直线ME上,并说明理由; 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由图1 图2【答案】解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)故可得c=0,b=4所以抛物线的解析式为1分由得当x=2时,该抛物线的最大值是4. 2分(2) 点P不在直线ME上. 已知M点的坐标为(2
10、,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+b.于是得 ,解得所以直线ME的关系式为y=-2x+8. 3分由已知条件易得,当时,OA=AP=,4分 P点的坐标不满足直线ME的关系式y=-2x+8. 当时,点P不在直线ME上. 5分以P、N、C、D为顶点的多边形面积可能为5 点A在x轴的非负半轴上,且N在抛物线上, OA=AP=t. 点P,N的坐标分别为(t,t)、(t,-t 2+4t) 6分 AN=-t 2+4t (0t3) , AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)0 , PN=-t 2+3 t 7分()当PN=0,即t=0或t=3时,以点P
11、,N,C,D为顶点的多边形是三角形,此三角形的高为AD, S=DCAD=32=3. ()当PN0时,以点P,N,C,D为顶点的多边形是四边形 PNCD,ADCD, S=(CD+PN)AD=3+(-t 2+3 t)2=-t 2+3 t+38分当-t 2+3 t+3=5时,解得t=1、29分 而1、2都在0t3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)10分当t=2时,此时N点的坐标(2,4)11分说明:()中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(),只有()也可以,不扣分
12、)4(2010山东济宁)如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,).(1)求此抛物线的解析式;(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与有怎样的位置关系,并给出证明;(第23题)(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.【答案】(1)解:设抛物线为.抛物线经过点(0,3),.抛物线为.3分 (2) 答:与相交. 4分证明:当时,. 为(2,0),为(6,0).设与相切于点,连接,则.,.又,.6分抛物线的
13、对称轴为,点到的距离为2.抛物线的对称轴与相交. 7分(3) 解:如图,过点作平行于轴的直线交于点.可求出的解析式为.8分设点的坐标为(,),则点的坐标为(,). . , 当时,的面积最大为. 此时,点的坐标为(3,). 10分(第23题)5(2010 浙江台州市)如图,RtABC中,C=90,BC=6,AC=8点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ点D,E分别是点A,B以Q,P为对称中心的对称点, HQAB于Q,交AC于点H当点E到达顶点A时,P,Q同时停止运动设BP的长为x,HDE的面积为y(1)求证:DHQABC;(2)求y关于x的
14、函数解析式并求y的最大值;(3)当x为何值时,HDE为等腰三角形?(第24题)H【答案】 (1)A、D关于点Q成中心对称,HQAB,=90,HD=HA,(图1)(图2)DHQABC(2)如图1,当时, ED=,QH=,此时当时,最大值如图2,当时,ED=,QH=,此时 当时,最大值y与x之间的函数解析式为y的最大值是(3)如图1,当时,若DE=DH,DH=AH=, DE=,=,显然ED=EH,HD=HE不可能;如图2,当时,若DE=DH,=,; 若HD=HE,此时点D,E分别与点B,A重合,;若ED=EH,则EDHHDA, 当x的值为时,HDE是等腰三角形.6(2010 浙江义乌)如图1,已知
15、ABC=90,ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60得到线段AQ,连结QE并延长交射线BC于点F.(1)如图2,当BP=BA时,EBF=,猜想QFC= ;(2)如图1,当点P为射线BC上任意一点时,猜想QFC的度数,并加以证明;图2ABEQPFC图1ACBEQFP(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式【答案】解: 图1ACBEQFP(1) 30 = 60H不妨设BP, 如图1所示BAP=BAE+EAP=60+EAP 图2ABEQPFCEAQ=QAP+EAP=60+EAPBAP=EAQ 在
16、ABP和AEQ中 AB=AE,BAP=EAQ, AP=AQABPAEQAEQ=ABP=90BEF=60(事实上当BP时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分) (3)在图1中,过点F作FGBE于点G ABE是等边三角形 BE=AB=,由(1)得30 在RtBGF中, BF= EF=2 ABPAEQ QE=BP= QF=QEEF 过点Q作QHBC,垂足为H在RtQHF中,(x0)即y关于x的函数关系式是: 7(2010 重庆)已知:如图(1),在直角坐标系xOy中,边长为2的等边的顶点在第一象限,顶点在轴的正半轴上. 另一等腰的顶点在第四象限,现有两动点,分别从,两点同时出发,点
17、以每秒1个单位的速度沿向点运动,点以每秒3个单位的速度沿运动,当其中一个点到达终点时,另一个点也随即停止 (1)求在运动过程中形成的的面积与运动的时 间之间的函数关系式,并写出自变量t的取值范围;(2)在等边的边上(点除外)存在点,使得为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有,其两边分别与, 交于点,连接将绕着 点旋转(旋转角),使得,始终在边和边上试判断在这一过程中,的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由【答案】解:(1)过点作于点(如图)26题答图, , 在Rt中,(1分) ()当时,,;过点作于点(如图) 在Rt中,26题答图
18、即 (3分) ()当时,(如图),即故当时,当时,(5分)26题答图(2)或或或(9分)(3)的周长不发生变化延长至点,使,连结(如图),(10分) 又 (11分)的周长不变,其周长为4(12分)8(2010 福建德化)(12分)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数关系式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0t3),直线A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学 动点问题专项训练讲解 中考 数学 问题 专项 训练 讲解
限制150内