国家质量基础的共性技术研究与应用申报的指南.doc
《国家质量基础的共性技术研究与应用申报的指南.doc》由会员分享,可在线阅读,更多相关《国家质量基础的共性技术研究与应用申报的指南.doc(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 附件10“国家质量基础的共性技术研究与应用”重点专项2016年度申报指南国家质量基础(NQI)由计量、标准、合格评定(检验检测和认证认可)共同构成,是联合国工业发展组织和国际标准化组织在总结质量领域100多年实践经验基础上提出的。NQI支撑并服务于国民经济的各个领域,具有公共产品属性,技术性、专业性、系统性和国际性特征鲜明,不仅被国际公认是提升质量竞争能力的基石,更是保障国民经济有序运行的技术规则、促进科技创新的重要技术平台、提升国际竞争力的重要技术手段。新常态下,党中央、国务院提出把推动发展的立足点转到提高质量和效益上来,NQI的战略地位和基础作用更加凸显。加强国家质量基础的共性技术研究与
2、应用,对于推动我国经济发展保持中高速增长、迈向中高端水平,具有重要的现实意义。为推进我国NQI的科技创新,驱动我国经济社会发展的质量提升,依据国务院关于印发质量发展纲要(20112020年)的通知(国发20129号),国务院关于印发国家计量发展规划(20132020年)的通知(国发201310号),国务院关于印发深化标准化工作改革方案的通知(国发201513号)等文件精神,按照国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知(国发201464号)要求,科技部会同国家质检监督检验检疫总局等13个部门,制定了国家重点研发计划国家质量基础的共性技术研究与应用重点专项实施方案。按照全链
3、条设计、一体化实施的思路,聚焦产业转型升级、保障和改善民生、提升国际竞争力等国家重大需求,围绕计量、标准、合格评定(检验检测和认证认可)和典型示应用5个方向设置11个重点任务:新一代量子计量基准、新领域计量标准、高准确度标准物质和量值传递扁平化、基础通用与公益标准、产业共性技术标准、中国标准国际化,基础公益检验检测技术、重要产业检验检测技术、基础认证认可技术、新兴领域认证认可技术和典型示。本专项的总体目标是:到2020年,实现我国NQI总体水平达到并跑,在部分领域达到领跑水平:国际互认测量能力进入世界前3,为国际单位制重新定义做出实质性贡献,研制计量基标准和测量装置100120 台/套,研制国
4、家标准物质500600 项,计量科技整体水平跻身世界前列;研制国际标准200 项以上,我国主导制定的国际标准占同期国际标准总数比例由0.7%提升到1.5%,实现超过100 项中国标准走出去,研制基础通用、社会公益和产业共性国家标准1000 余项,适应经济社会发展和科技创新需求的技术标准体系基本完善,重点领域标准水平领跑国际;填补社会公益和重要产业领域检验检测新方法和核心技术300 项,新装置51 台/套,诊断产品70 种,实现重点领域检验检测核心技术突破;建立6 套国际或区域领先的认证认可技术方案,重点领域认证认可技术创新能力达到国际先进水平;形成5 套以上全链条的“计量标准检验检测认证认可”
5、整体技术解决方案。本专项执行期为2016年至2020年。各任务落实以项目为主,2016年第一批项目支持任务不超过总任务的三分之一,共49个任务方向。重点研究基本物理常数精密测定、新计量和导出量以与战略性新兴产业、国防等领域关键计量技术,重点研究基础性、公益性和重点产业急需的国际标准、国家标准、检验检测和认证认可技术,以与开展NQI技术在典型领域的集成示。每个任务方向支持12个项目,所有项目均应整体申报,须覆盖全部考核指标。项目执行期为35年,如无特殊说明,每个项目下设的任务(课题)数不超过6个,项目所含单位数不超过20个。本专项指南如下:一、计量技术1 新一代量子计量基准1.1 应对单位制变革
6、的基本物理常数精密测定研究容:应对国际单位制重大变革,研制基准能量天平、基准热力学温度计精密实验系统,准确测定普朗克常数和玻尔兹曼常数;准确测量浓缩硅28摩尔质量,为阿伏伽德罗常数的测定提供基础数据;研究基于普朗克常数、玻尔兹曼常数的质量千克单位、开尔文单位复现和传递技术与装置,研究微波电场强度溯源至普朗克常数的里德堡原子量子干涉精密测量技术;研究基于新一代计算电容测定精细结构常数,结合普朗克常数确定基本常数基本电荷,复现以安培为基本单位的电磁计量单位。考核指标:约束性指标:研制测量实验系统8套:基准热力学温度计实验系统2套,测定玻尔兹曼常数的相对标准不确定度在3106围;能量天平法测量普朗克
7、常数试验装置1套,2017年测量不确定度达到5107(k=1),2020年测量不确定度争取进入108(k=1)量级;非空气条件下精密天平1套,1 kg砝码质量测量的标准不确定度优于13g;里德堡原子量子干涉法微波电场精密测量实验系统1套,测量的相对标准不确定度0.5 %(k=1);高温基准热力学温度计实验系统2套,600 K至1000 K测量开尔文的相对标准不确定度优于5105,1000 K至3000 K绝对辐射温度计测量开尔文的相对标准不确定度达到(210)105;新一代计算电容实验系统1套,精细结构常数测量的相对标准不确定度优于5108,交流阻抗参数量传水平达到109量级;浓缩硅28摩尔质
8、量测量的相对标准不确定度优于108。发表被SCI检索的论文不少于30篇,申请发明专利不少于5项。预期性指标:研制实用化在线校准的高温热力学基准温度计,突破高温气冷堆温度计在线校准技术;研制小型化、低扰动微波电场精密测量量子传感器。实施年限:20162020年。1.2 时间频率基准与其传递技术研究研究容:研制高准确度锶原子光晶格钟,研究突破标准量子极限的新方法;研究长距离时间频率光纤传递技术;研究原子喷泉基准钟与其应用,研究喷泉钟紧驾驭氢钟的新技术;研制原子干涉绝对重力基准装置,通过国际关键比对验证重力测量值的准确性;研究综合守时技术,以国家原子时标基准为基础,产生统一的中国协调时UTC(CN)
9、,研究UTC/国家秒长基准原子钟驾驭时标的技术;开展高稳定光纤光学频率梳与其应用研究,实现国家波长基准的量值溯源;研究高精度GNSS导航接收机室校准技术。考核指标:约束性指标:研制测量装置6套:锶原子光晶格钟实验装置1套,评定不确定度进入1018量级;原子喷泉基准钟1台,不确定度优于81016,天稳定度优于21015,喷泉钟紧驾驭氢钟,输出频率7天稳定度优于81016;冷原子干涉重力测量装置1套,系统不确定度优于10Gal;UTC(CN)产生系统1套,UTC(CN)与UTC的时间偏差优于10ns,UTC(CN)时间稳定度优于 1ns/5d;光梳波长基准量值溯源装置1套,不确定度优于51013;
10、高精度GNSS导航接收机室校准装置1套,位置不确定度1 cm,授时不确定度20ns。在SCI检索期刊上发表论文不少于20篇;申请专利不少于6项。预期性指标:掌握光钟的高精度比对技术;实现喷泉钟紧驾驭氢钟的技术;提高绝对重力测量的水平;形成利用UTC/基准原子钟驾驭产生稳定可靠的中国原子时的算法;通过光梳实现国家波长基准的量值溯源;实现光学频率梳与超稳激光结合,产生超稳微波,为喷泉钟服务。实施年限:20162020年。1.3 光辐射计量基标准研究研究容:研究超导转换边沿传感器的单光子辐射基准;研制高可靠性、小型化的高准确度、高稳定度激光波长标准;研究极端光辐射度与材料计量关键技术和研制相关测量装
11、置,建立太赫兹辐射多参数以与极端量程光度和超黑材料光谱特性计量标准;针对地球辐射平衡等辐射定标需求,研究紫外至中红外波段基于探测器和辐射源的光谱辐射度计量基准和扁平化量传体系;研究光腔衰荡法气体成份量基准,建立基于光频梳的光谱测量装置,实现CO2/CO的成份量测量。考核指标:约束性指标:建立标准与测量装置11套:光子数可分辨微弱光辐射计量标准装置,量子效率标准不确定度2.5%;633nm光波长标准装置,波长的标准不确定度21011;太赫兹功率测量装置,标准不确定度1.5%;太赫兹频率测量装置标准不确定度51011;极端量程光亮度、光照度计量标准装置,照度测量上限为5104lx、下限为11011
12、lx,不确定度2%4%;5002000nm超黑材料漫反射比测量标准装置,测量围达到0.01%;基于高温固定点的光谱辐射度标准,最佳不确定度0.6%;在中红外波段3m5m建立光源的光谱辐射度测量装置,标准不确定度3%6%;基于可调谐激光器的光谱辐射度计量标准与量传体系,最佳不确定度0.2%;荧光色度测量装置,不确定度为1.8%;基于PDH锁频的稳腔长光腔衰荡光谱自动测量实验装置,3小时光腔温度变化不超过0.005;1米长光腔长度变化不超过20nm,与称重法配制标气相比,测量结果相差不超过5%。申请发明专利3项,论文30篇,申请制定计量检定规程和计量校准规3项。预期性指标:建立新一代高精度、扁平化
13、的光谱辐射度计量定标平台,满足卫星与地面光谱辐射度尖端定标需求。实施年限:20162020年。1.4 电学量子与几何量计量基标准研制研究容:研制量子电压相关基标准的核心大规模集成约瑟夫森结阵器件;研制峰值10 V、频率50 Hz400 Hz的工频交流量子电压标准,研制便携免液氦型量子电压标准,研制量子功率基准;研究纳米电路高频量子阻抗特性与测试系统;研制X射线晶格比较仪标准装置,实现硅单晶晶格常数的定值与溯源,实现量值国际等效;研究基于光频梳的新一代几何量计量基准,研制光频梳绝对测距装置。考核指标:约束性指标:研制量子基标准与测试系统所需芯片2种:研制出集成规模大于1万个结的约瑟夫森结阵器件;
14、研制交流量子电压系统所需芯片。研制基标准或测量装置6套:交流量子电压标准装置1套,峰值10 V、频率50 Hz400 Hz,不确定度5 V/V(k=1);便携式免液氦维护型量子电压标准1套;400 Hz有功量子功率基准装置1套,电压100V,电流 5A,电压、电流与有功功率测量不确定度分别为:0.001%(k=1)、0.001%(k=1)、0.002%(k=1);量子阻抗零拍检波测试系统1套,频带围GHz,可测量110 dBm微小信号;X射线晶格比较仪1套,测量不确定度:5.0107(k=1);基于光频梳的新一代几何量计量核心装置1套,测量不确定度107。发表论文不少于20篇,申请专利/软件著
15、作权不少于3项。预期性指标:研制各种量子电压基标准所需的核心器件,系统化建设电学量子基标准体系,研究交流量子电压量值传递方法,研制便携式量子电压标准并推广其在工业、国防、军工、科研等领域的应用,实现对400Hz有功功率的精确测量。建立X射线晶格比较仪国家计量标准装置,申请制定国家校准规和国家标准,开展国际比对。研制光频梳绝对测距大长度测量实验装置,提升大长度计量能力。实施年限:20162020年。1.5 气相分子化学反应精确操控与精密测量系统研究容:研发量子态分辨的冷原子分子束源装置,研究冷分子离子的精确操控技术,精确测量极低温下的基元离子分子反应速率;研发高精度、高分辨的光谱和质谱技术,精确
16、测量关键化合物和反应物的分子键能;研制高精准定性定量能力的光谱质谱系统,实施靶向的气相离子/分子合成,精密测量功能分子结构与活性;研制存储超大离子的离子阱、离子信号无损探测系统,研究离子阱生物大分子精确操控、激光解离和结构精确鉴定技术。考核指标:约束性指标:极低温量子态选择的基元离子分子化学反应实验装置1套,离子分子束源温度低于6K。化学键能精密测量装置1套,实验获得5个以上重要分子的精确键能的测量数据,键能的精度超越化学精度(1 kcal/mol)。光谱质谱分析系统1套,质荷比测量围102000amu。基于紫外激光质谱技术的生物大分子结构精确测量系统1套。离子阱检测最大质荷比30000Th;
17、质量分辨率大于等于30000;实现激光器对质量大于等于29KDa大分子的解离,序列覆盖率优于60%。发表SCI论文30篇以上,申请发明专利20项以上。预期性指标:形成气相分子化学反应精确操控与精密测量研究基地。实施年限:20162020年。2 新领域计量标准2.1 先进制造中关键参量的计量标准和溯源技术研究研究容:研究以光学频率梳等前沿技术的面形测量方法和高精度面形轮廓标准装置;研制混合式角度标准装置,研究宽带实时角度发生与同步比较技术、混合动态测角与溯源技术;研究晶圆标准片计量技术,研制校准装置实现集成电路线上测量仪器直接校准;研制针尖增强拉曼光谱仪,研究纳米材料微区拉曼准确测量与溯源技术;
18、实现相关参量的国量值统一与溯源,参与国际比对,满足量值国际等效性。考核指标:约束性指标:研制装置4套:非球面面形轮廓标准测量装置1套,面形轮廓测量标准不确定度:0.2m(球面或非球面);混合式角度计量标准装置1套,0/s100/s围角度示值误差:0.2,100/s200/s围角度示值误差:0.5,200/s300/s围角度示值误差:1.0;晶圆标准片校准装置1台,测量不确定度小于4 nm(k = 1);针尖增强拉曼光谱测量装置1台,拉曼空间分辨力80nm,拉曼光谱分辨力2 cm1。发表文章10篇,申请发明专利3项。实施年限:20162020年。2.2 精密制造中的补偿和测量关键技术研究研究容:
19、研究干涉测量中的气体折射率高精度测量与误差补偿技术,研制气体折射率高精度测量仪器;研究散斑数字比较全息测量技术,研制相关仪器装置,实现精密制造中表面形貌和形变的高精度无损动态、高效测量;研究微纳三维动态位移(测头)校准装置,形成主轴与测头的动静态参数综合计量系统;研究自支撑薄膜标准溯源技术,实现微膜非接触式高精度测量,建立国家微膜计量标准测量装置,满足微电子半导体、新能源与精密机械等先进制造的溯源和科研需求。考核指标:约束性指标:1.研制测量装置6套:气体折射率测量仪1套,折射率测量相对不确定度2108(k=2);可用于双频激光干涉仪的新型波长跟踪器2套,长时间稳定性(24小时)优于107;散
20、斑数字比较全息测量装置和算法软件1套,工作波长532nm,测量不确定度0.1微米,视野围1010厘米;建立高速主轴动静态参数计量标准装置1台,实现额定转速下的动态参数测量不确定度(线值)优于80m(k=2);结合三维动态位移(测头)校准装置,形成主轴与测头的动静态参数综合计量平台,全面评价整机质量;自支撑薄膜厚度计量标准装置1台,测量围:(10100)m,测量不确定度:(0.5+0.03H)m。发表论文1220篇,申请专利/软件著作权48项。预期性指标:申请制定计量检定规程和计量校准规4项以上,研究成果在精密制造现场应用。实施年限:20162020年。2.3 航天空间关键计量标准与溯源技术研究
21、研究容:研究建立空间标准太阳电池计量标准装置、模拟空间太源和测量装置与其溯源技术;研究建立带电粒子水吸收剂量和光子硅吸收剂量标准装置和溯源技术,研究固体剂量计空间辐射累积剂量测量方法;研究建立(0.5300) keV单能X射线标准装置;研究建立基于长寿命核素和核素的活度计量标准装置和量值溯源技术;研究注量、水吸收剂量等导出量的复现新技术并建立计量基准。考核指标:约束性指标:研制基标准测量装置9套,标准器2套:建立空间标准太阳电池量子效率和短路电流计量标准装置1套,短路电流不确定度优于1.2%(k=2);建立IV特性测量装置1套,模拟光源辐照不均匀度和不稳定度优于2.0%(k=2);建立固体核径
22、迹探测测量装置、Co60射线硅吸收剂量标准装置、质子水吸收剂量标准装置共3套,不确定度分别优于10%、5%和2%(k=1);建立(0.5300) keV单能X射线标准装置1套,X射线光子数测量不确定度好于5% 10keV;研制基于长寿命核素和核素的标准器2套,年稳定性好于3%;研制活度测量装置2套,标准不确定度好于1.5%;研制热中子注量基准装置1套,均匀性好于0.8%。参加国际比对3项,发表论文26篇,申请发明专利5项。预期性指标:申请制定计量检定规程和计量校准规4项。建立太空环境下太阳电池翼的计量平台。发布航天相关电离辐射基本物理参数。实施年限:20162020年。2.4 海洋声探测关键计
23、量标准与溯源技术研究研究容:研究常压、高静水压下水声声压量值复现新方法并建立校准装置;研究有限空间校准频率拓展技术,减小不确定度水平;研究水声换能器辐射声场与水声材料参数测量方法,研究船舶水下辐射噪声测量技术。研究海水密度与声速测量,建立静力式离线、在线海水密度计计量标准,建立温度压力围宽广的海水密度与声速测量装置,研究极端条件对海水密度与声速的影响。研究以海流计、多波束声纳等为代表的声探测设备校准技术,建立水流速计量体系,解决多普勒海流计的溯源问题。考核指标:约束性指标:建立计量基标准装置7套:建立常压下水听器校准装置,包括互易法与光学法装置各1套,覆盖频率围20Hz500kHz,不确定度优
24、于0.7 dB(k=2);建立高静水压下水听器校准装置,压力上限10 MPa,频率围10 kHz100 kHz,不确定度优于1.0dB(k=2);建立水声材料参数测量装置,200 Hz2 kHz频率围回声降低和插入损失的测量不确定度不大于1.5 dB(k=2);建立在线与离线海水密度计量标准装置,标准不确定度分别为3106和0.3分度;建立围宽广的海水声速测量装置,温度273K至350K,压力高至30MPa,包括直接测量标准装置1套,标准不确定度优于0.01%,直接测量的海水声速仪校准装置1套,相对标准不确定度优于0.05%;针对多普勒海流计,建立海流计校准装置,流速围(0.013)m/s,不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 国家 质量 基础 共性 技术研究 应用 申报 指南
限制150内