基于单片机的恒温箱温度控制系统毕业论文带pid控制.doc
《基于单片机的恒温箱温度控制系统毕业论文带pid控制.doc》由会员分享,可在线阅读,更多相关《基于单片机的恒温箱温度控制系统毕业论文带pid控制.doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1章 绪 论温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。单片机具有和普通电脑类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益。本文采用单片机STC89C52设计了温度实时测量及控制系统。单片机STC89C52 能够根据温度传感器DS18B20所采集的温度在LCD1602液晶屏上实时显示,通过PID控制从而把温度控制在设定的范围之内。通过本次课程实践,我们更加的明
2、确了单片机的广泛用途和使用方法,以及其工作的原理。温度控制采用单片机设计的全数字仪表,是常规仪表的升级产品。温度控制的发展引入单片机之后,有可能降低对某些硬件电路的要求,但这绝不是说可以忽略测试电路本身的重要性,尤其是直接获取被测信号的传感器部分,仍应给予充分的重视,有时提高整台仪器的性能的关键仍然在于测试电路,尤其是传感器的改良。现在传感器也正在受着微电子技术的影响,不断发展变化。恒温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。但从对控制方法的分析来看,PID控制方法最适合本例采用。另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方
3、法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。现在国内外一般采用经典的温度控制系统。采用模拟温度传感器对加热杯的温度进行采样,通过放大电路变换为 05V 的电压信号,经过A/D 转换,保存在采样值单元;利用键盘输入设定温度,经温度标度转换转化成二进制数,保存在片内设定值单元;然后调显示子程序,多次显示设定温度和采样温度,再把采样值与设定值进行 PID 运算得出控制量,用其去调节可控硅触发端的通断,实现对电阻丝加热时间的控制, 以此来调节温度使其基本保持恒定。本系统
4、从硬件和软件两方面来讲述恒温箱温度自动控制过程,在控制过程中主要应用STC89C52、LCD1602液晶显示器,而主要是通过 DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过LCD1602显示实时温度的一种数字温度计。软件方面采用C语言来进行程序设计,使指令的执行速度快,节省存储空间。而系统的过程则是:首先,通过设置按键,设定恒温运行时的温度值,并且用LCD1602显示这个温度值.然后,在运行过程中将DS18B20采样的温度经过处理后的数字量用LCD1602进行显示,结合PID控制得出的信号传给单片机,用单片机的相应引脚来控制加热器,进行加热或停止加热,直到能在规定的温
5、度下恒温加热,如果温度超过了恒温设定值,用单片机控制制冷片对恒温箱进行降温,最后保证恒温箱在设定的温度下运行。第2章 总体方案设计2.1 方案一测温电路的设计,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 2.2 方案二考虑使用温度传感器,结合单片机电路设计,温度传感器的选择,采用温度芯片DS18B20测量温度,该芯片的物理化学性能很稳定,它能用做工业测温元件,且此元件线性较好。在0-100摄氏度时,最大线性偏差小于1摄
6、氏度。该芯片直接向单片机传输数字信号,便于单片机处理及控制。本制作的最大特点之一是直接采用温度芯片对为温度进行测量,使数据传输和处理简单化,直接读取被测温度值,之后进行转换,依次完成设计要求。比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。电路设计方框图如图2-1所示,它主要由五部分组成:控制部分主芯片采用单片机STC89C52;显示部分采用LCD1602液晶显示;温度设定部分采用按键设定;温度温度采集部分采用DS18B20温度传感器;加温部分采用光电可控硅MOC3061控制制大功率加热器;降温部分采用继电器控制TEC1-12706半导体制冷
7、片。STC89C52晶振电路复位电路按键电路DS18B20温度采集LCD1602显示电路光电双向可控硅控制加热器工作半 导 体制冷片工作图21 温度控制系统的总体设计方案第3章 温度控制系统的器件和模块选用 STC89C52简介STC89C52单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。主要特性如下:1增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051。 2工作电压:5.5V3.3V5V单片机/3.8V2.0V3V单片机。3工作频率范围:04
8、0MHz,相当于普通8051的080MHz,实际工作频率可达48MHz。4用户应用程序空间为8K字节,片上集成512字节RAM。5通用I/O口32个,复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。6具有EEPROM功能,具有看门狗功能。7共3个16位定时器/计数器,即定时器T0、T1、T2。8外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒。9通用异步串行口UART,还可用定时器软件实现多个UART。10工作温度范围:-40+85工业级/075商业级
9、。 STC89C52单片机的工作模式1掉电模式:典型功耗,可由外部中断唤醒,中断返回后,继续执行原程序。2空闲模式:典型功耗2mA;正常工作模式:典型功耗4Ma7mA。3掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备。 单片机最小系统结构本系统以STC89C52单片机为核心,本系统选用的晶振,使得单片机有合理的运行速度,复位电路为按键高电平复位。STC89C52单片机最小系统电路设计如图3-1所示。图3-1 单片机最小系统框 STC89C52的引脚说明STC89C52的引脚图如图3-2:图32 STC89C52引脚图VCC40引脚:电源电压。VSS20引脚:接地。P0端口,
10、3932引脚:P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。此时,P0口内部上拉电阻有效。在Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。验证时,要求外接上拉电阻。P1端口,18引脚:P1口是一个带内部上拉电阻的8位双向I/O口。P1的输出缓冲器可驱动吸收或者输出电流方式4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。P1口作输入口使用时,因为有内部上拉电阻,那些被
11、外部拉低的引脚会输出一个电流。此外,和还可以作为定时器/计数器2的外部技术输入和定时器/计数器2的触发输入,具体参见表3-1。在对Flash ROM编程和程序校验时,P1接收低8位地址。表3-1 和引脚复用功能引脚号功能特性T2定时器/计数器2外部计数输入,时钟输出T2EX定时器/计数器2捕获/重装触发和方向控制P2端口,2128引脚:P2口是一个带内部上拉电阻的8位双向I/O端口。P2的输出缓冲器可以驱动吸收或输出电流方式4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。P
12、3端口,1017引脚:P3是一个带内部上拉电阻的8位双向I/O端口。P3的输出缓冲器可驱动吸收或输出电流方式4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流。在对Flash ROM编程或程序校验时,P3还接收一些控制信号。P3口除作为一般I/O口外,还有其他一些复用功能,如表3-2所示。表3-2 P3口引脚复用功能引脚号复用功能RXD串行输入口TXD串行输出口INT0外部中断0INT1外部中断1T0定时器0的外部输入T1定时器1的外部输入WR外部数据存储器写选通RD外部数据存储
13、器读选通RST9引脚:复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。看门狗计时完成后,RST引脚输出96个晶振周期的高电平。特殊寄存器AUXR地址8EH上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。ALE/PROG30引脚:地址锁存控制信号ALE是访问外部程序存储器时,锁存低8位地址的输出脉冲。在Flash编程时,此引脚PROG也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址位8E
14、H的SFR的第0位置“1”,ALE操作将无效。这一位置“1”,ALE仅在执行MOVX或MOV指令时有效。否则,ALE将被微弱拉高。这个ALE使能标志位地址位8EH的SFR的第0位的设置对微控制器处于外部执行模式下无效。PSEN29引脚:外部程序存储器选通信号PSEN是外部程序存储器选通信号。当STC89C52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而访问外部数据存储器时,PSEN将不被激活。EA/VPP31引脚:访问外部程序存储器控制信号。为使能从0000H到FFFFH的外部程序存储器读取指令,EA必须接GND。注意加密方式1时,将内部锁定位RESET。为了执行内部程
15、序指令,EA应该接VCC。在Flash编程期间,EA也接收12伏VPP电压。XTAL119引脚:振荡器反相放大器和内部时钟发生电路的输入端。XTAL218引脚:振荡器反相放大器的输入端。DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改良型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。这一部分主要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P3.7口,单片机接受温度并存储。此部分只用到DS18B20和单片机,硬件很简单,DS18B20引脚图如3
16、-3所示。 图3-3 DS18B20引脚图如 DS18B20主要性能特点1 用户可自设定报警上下限温度值。2不需要外部组件,能测量55+125 范围内的温度。310 +85 范围内的测温准确度为05 。通过编程可实现9l2位的数字读数方式,可在至多750 ms内将温度转换成12 位的数字,测温分辨率可达0.0625。 4独特的单总线接口方式,与微处理器连接时仅需要一条线即可实现与微处理器双向通讯。5测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。6负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。 DS18B20的工
17、作原理根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:1每一次读写之前都必须要对DS18B20进行复位。2复位成功后发送一条ROM指令。3最后发送RAM指令,这样才能对DS18B20进行预定的操作。 复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待1560微秒左右后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。其工作时序包括初始化时序、写时序和读时序,具体工作方法如图3-4,3-5,3-6所示。 初始化时序图3-4 初始化时序图上拉电阻将总线拉高,延时1560us,并进入接受模式,以产生低电平应答脉冲,假设为低电
18、平,再延时480us。 写时序T1T01us60us15us15-45us图3-5 a写0时序15usT1T015-45us60us1us图3-5 b写1时序写时序包括写0时序和写1时序。所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,都是以总线拉低开始。写1时序,主机输出低电平,延时2us,然后释放总线,延时60us。写0时序,主机输出低电平,延时60us,然后释放总线,延时2us。 读时序图36 读时序总线器件仅在主机发出读时序是,才向主机传输数据,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。所有读时序至少需要60us,且在2次独立的读时
19、序之间至少需要1us的恢复时间。每个读时序都由主机发起,至少拉低总线1us。主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取总线当前电平,然后延时50us。DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同DS18B20 为9位12位A/D转换精度,而DS1820为9位A/D转换,虽然我们采用了高精度的芯片,但在实际情况上由于技术问题比较难实现,而实际精度此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值
20、。如下3-7的测温原理图不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3-7所示。 图3-7 DS18B20的测温原理框图液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,有电就有显示,这样即可以显示出图形。液晶显示器具有厚度薄、适用于大规模集成电路直接驱动、易于实现全彩色显示的特点,目前已经被广泛应用在便携式电脑、数字摄像机、PDA移动通信工具等众多领域。 LCD1602的基本参数及引脚功能LCD1602分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差异,两者尺寸差异如下列图3-8所示。
21、图3-8 LCD1602尺寸图LCD1602参数:显示容量:162个字符工作电流:2.0mA(5.0V)字符尺寸:2.954.35(WH)mm引脚功能说明LCD1602采用标准的14脚无背光或16脚带背光接口,各引脚接口说明如表3-3所示。表3-3 引脚接口说明编号符号引脚说明编号符号引脚说明1VSS电源地9D2数据2VDD电源正极10D3数据3VL液晶显示偏压11D4数据4RS数据/命令选择12D5数据5R/W读/写选择13D6数据6E使能信号14D7数据7D0数据15BLA背光源正极8D1数据16BLK背光源负极第1脚:VSS为地电源。第2脚:VDD接5V正电源。第3脚:VL为液晶显示器比
22、照度调整端,接正电源时比照度最弱,接地时比照度最高,比照度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整比照度。第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。第714脚:D0D7为8位双向数据线。第15脚:背光源正极。第16脚:背光源负极。 LCD1602的指令说明及时序1602
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 恒温箱 温度 控制系统 毕业论文 pid 控制
限制150内