届高考数学一轮复习第章平面解析几何第讲双曲线作业试题含解析新人教版.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《届高考数学一轮复习第章平面解析几何第讲双曲线作业试题含解析新人教版.doc》由会员分享,可在线阅读,更多相关《届高考数学一轮复习第章平面解析几何第讲双曲线作业试题含解析新人教版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章 平面解析几何第四讲双曲线练好题考点自测1.2016全国卷,5分已知方程 - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3)B.(-1,)C.(0,3) D.(0,)2.2019全国卷,5分双曲线C:-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则PFO的面积为()A.B.C.2D.33.2020全国卷,5分设O为坐标原点,直线x=a与双曲线C:-=1(a0,b0)的两条渐近线分别交于D,E两点.若ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.324.2021大同市调研测试如图9-4-1,双曲线C:
2、-=1(a0,b0)的左、右焦点分别为F1,F2,过F2作线段F2P与C交于点Q,且Q为PF2的中点.若等腰三角形PF1F2的底边PF2的长等于C的半焦距,则C的离心率为()A. B.C. D.图9-4-15.2018天津,5分已知双曲线-=1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.-=1 B.-=1C.-=1 D.-=16.多选题以下关于双曲线的命题说法正确的是()A.若点(2,3)在焦距为4的双曲线-=1(a0,b0)上,则此双曲线的离心率e=1B.若点F,
3、B分别是双曲线-=1(a0,b0)的一个焦点和虚轴的一个端点,则线段FB的中点在此双曲线的渐近线上C.等轴双曲线的渐近线互相垂直,离心率等于D.若双曲线-=1(a0,b0)与-=1(a0,b0)的离心率分别是e1,e2,则+=1(称这两条双曲线互为共轭双曲线)7.2020北京,5分已知双曲线C:-=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.8.2020全国卷,5分已知F为双曲线C:-=1(a0,b0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.拓展变式1.(1)2020广东七校第一次联考P是双曲线C:-y2=1右支上一点,直线l是双曲
4、线C的一条渐近线.P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为()A.1 B.2+ C.4+ D.2+1(2)2020全国卷,5分设双曲线C:-=1(a0,b0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1PF2P.若PF1F2的面积为4,则a=()A.1 B.2 C.4 D.82.2017天津,5分已知双曲线-=1(a0,b0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.-=1 B.-=1C.-=1 D.-=13.2020成都三诊已知F1,F2是双曲线-=1(a0,b0)的左、右焦点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 平面 解析几何 双曲线 作业 试题 解析 新人
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内