届高考数学一轮复习第二章第十节第课时利用导数研究函数的极值与最值课时作业理含解析北师大版.doc
《届高考数学一轮复习第二章第十节第课时利用导数研究函数的极值与最值课时作业理含解析北师大版.doc》由会员分享,可在线阅读,更多相关《届高考数学一轮复习第二章第十节第课时利用导数研究函数的极值与最值课时作业理含解析北师大版.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时 利用导数研究函数的极值与最值授课提示:对应学生用书第291页A组基础保分练1函数y在0,2上的最大值是()A.B.C0 D.解析:易知y,x0,2,令y0,得0x1,令y0,得1x2,所以函数y在0,1上单调递增,在(1,2上单调递减,所以y在0,2上的最大值是.答案:A2(2021沈阳模拟)设函数f(x)xex1,则()Ax1为f(x)的极大值点Bx1为f(x)的极小值点Cx1为f(x)的极大值点Dx1为f(x)的极小值点解析:由f(x)xex1,可得f(x)(x1)ex,令f(x)0可得x1,即函数f(x)在(1,)上是增函数;令f(x)0可得x1,即函数f(x)在(,1)上是减
2、函数,所以x1为f(x)的极小值点答案:D3(2021肇庆模拟)已知x1是f(x)x2(a3)x2a3ex的极小值点,则实数a的取值范围是()A(1,) B.(1,)C(,1) D(,1)解析:依题意f(x)(xa)(x1)ex,它的两个零点分别为x1,xa,若x1是函数f(x)的极小值点,则需a1,此时函数f(x)在(a,1)上单调递减,在(1,)上单调递增,在x1处取得极小值答案:D4.若函数f(x)的图像如图所示,则m的取值范围为()A(,1)B(1,2)C(0,2)D(1,2)解析:f(x),由函数图像的单调性及有两个极值点可知m20且m0,故0m2.又由题图易得1,即m1.故1m2.
3、答案:D5已知不等式xsin xcos xa对任意的x0,恒成立,则整数a的最小值为()A2 B.1C0 D1解析:令f(x)xsin xcos x,则f(x)sin xxcos xsin xxcos x,令f(x)0,则在(0,)上x.当x时,f(x)0,f(x)单调递增,当x时,f(x)0,f(x)单调递减,又f(0)1,f,f()1,所以当x时,f(x)取得最大值,即f(x)maxf,所以a,即整数a的最小值为2.答案:A6已知函数f(x)x3ax23x9,若x3是函数f(x)的一个极值点,则实数a_解析:f(x)3x22ax3.由题意知,x3是方程f(x)0的根,所以3(3)22a(3
4、)30,解得a5.经检验,当a5时,f(x)在x3处取得极值答案:57.函数f(x)x3bx2cxd的大致图像如图所示,则xx_解析:函数f(x)的图像过原点,所以d0.又f(1)0且f(2)0,即1bc0且84b2c0,解得b1,c2,所以函数f(x)x3x22x,所以f(x)3x22x2,由题意知x1,x2是函数的极值点,所以x1,x2是f(x)0的两个根,所以x1x2,x1x2,所以xx(x1x2)22x1x2.答案:8已知函数f(x)sin xx2,若f(x)在上有唯一极大值点,求实数a的取值范围解析:由已知得f(x)cos xax,当a0时,f(x)0,f(x)在上单调递增,此时f(
5、x)在上不存在极值点;当a0时,f(x)sin xa0,f(x)在上单调递减,又f(0)10,fa0,故存在唯一x0使得x(0,x0)时,f(x)0,f(x)单调递增,x时,f(x)0,f(x)单调递减此时,x0是函数f(x)的唯一极大值点,综上可得,实数a的取值范围是(0,)9已知函数f(x)ln xax2x,aR.(1)当a0时,求曲线yf(x)在(1,f(1)处的切线方程;(2)令g(x)f(x)(ax1),求函数g(x)的极值解析:(1)当a0时,f(x)ln xx,则f(1)1,所以切点为(1,1),又f(x)1,所以切线斜率kf(1)2,故切线方程为y12(x1),即2xy10.(
6、2)g(x)f(x)(ax1)ln xax2(1a)x1,则g(x)ax(1a),当a0时,因为x0,所以g(x)0.所以g(x)在(0,)上是增函数,函数g(x)无极值点当a0时,g(x),令g(x)0得x.所以当x时,g(x)0;当x时,g(x)0.因为g(x)在上是增函数,在上是减函数所以x时,g(x)有极大值gln(1a)1ln a.综上,当a0时,函数g(x)无极值;当a0时,函数g(x)有极大值ln a,无极小值B组能力提升练1. (2021太原模拟)函数yf(x)的导函数的图像如图所示,则下列说法错误的是()A(1,3)为函数yf(x)的单调递增区间B(3,5)为函数yf(x)的
7、单调递减区间C函数yf(x)在x0处取得极大值D函数yf(x)在x5处取得极小值解析:由函数yf(x)的导函数的图像可知,当x1或3x5时,f(x)0,yf(x)单调递减;当x5或1x3时,f(x)0,yf(x)单调递增,所以函数yf(x)的单调递减区间为(,1),(3,5),单调递增区间为(1,3),(5,),函数yf(x)在x1,5处取得极小值,在x3处取得极大值,故选项C错误答案:C2函数f(x)2x39x22在4,2上的最大值和最小值分别是()A25,2 B.50,14C50,2 D50,14解析:因为f(x)2x39x22,所以f(x)6x218x,当x4,3)或x(0,2时,f(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 第二 第十节 课时 利用 导数 研究 函数 极值 作业 解析 北师大
限制150内