小学奥数工程问题综合.doc
《小学奥数工程问题综合.doc》由会员分享,可在线阅读,更多相关《小学奥数工程问题综合.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作量=工作效率时间. 在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子.:一件工作,甲做15天可完成,乙做10天可完成.问两人合作几天可以完成? 一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位, 再根据基本数量关系式,得到 工作效率工作时间=工作总量 =6(天) 答:两人合作需要6天. 这是工程问题中最基本的问题,这一讲介绍的许多
2、例子都是从这一问题发展产生的。为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30。设全部工作量为30份,那么甲每天完成2份,乙每天完成3份,两人合作所需天数是 : 30(2+ 3)= 6(天) 如果用数计算,更方便. 3:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是1015=23工程问题方法总结一:基本数量关系:工效时间=工作总量 二:基本特点:设工作总量为“1”,工效=1/时间 三:基本方法:算术方法、比例方法、方程方法。 四:基本思想:分做合想、合做分想。 五:类型与方法:一:分做合想:1.
3、合想,2.假设法,3.巧抓变化(比例),4.假设法。二:等量代换:方程组的解法代入法,加减法。 三:按劳分配思路:每人每天工效每人工作量按比例分配 四:休息请假: 方法:1.分想:划分工作量。2.假设法:假设不休息。 五:休息与周期: 1. 已知条件的顺序:先工效,再周期,先周期,再天数。 2. .天数:近似天数,准确天数。 3. 列表确定工作天数。 六:交替与周期:估算周期,注意顺序! 七:注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。 八:工效变化。 九:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。 十:牛吃草问题:1.新生草量,2.原有草
4、量,3.解决问题。 工程问题.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些. 两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体. 例1一件工作,甲做9天可以完成,乙做6天可以完成。现在甲先做了3天,余下的工作由乙继续完成,乙需要做几天可以完成全部工作? 解一:把这件工作看作1,甲每天可完成这件工作的九分之一,做3天完成的1/3。 乙每天可完成这件工作的六分之一,(1-1/3)1/6=4(天) 答:乙需要做4
5、天可完成全部工作. 解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 3) 3= 4(天). 解三:甲与乙的工作效率之比是 6 9= 2 3. 甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天). 例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天. 这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作
6、效率 如果乙独做,所需时间是 50天 如果甲独做,所需时间是 75天 答:甲或乙独做所需时间分别是75天和50天. 例3某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天? 解:先对比如下: 甲做63天,乙做28天; 甲做48天,乙做48天. 就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56天. 例4 一件工程,甲队单独做10
7、天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间? 解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天). 答:从开始到完工共用了11天. 解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作 (30- 3 8- 1 2)(3+1)= 1(天). 解三:甲队做1天相当于乙队做3天. 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做23=6(天).乙队单独
8、做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1, 其中3天可由甲队1天完成,因此两队只需再合作1天. 解四: 方法:分休合想(题中说甲乙两队没有在一起休息,我们就假设他们在一起休息.) 甲队每天工作量为1/10,乙为1/30,因为甲休息了2天,而乙休息了8天,因为82,所以我们假设甲休息两天时,乙也在休息。那么甲开始工作时,乙还要休息:8-2=6(天)那么这6天内甲独自完成了这项工程的1/106=6/10,剩下的工作量为1-6/10=4/10,而这剩下的4/10为甲乙两人一起合作完成的工程量,所以,工程量的4/10 需要甲乙合作:(4/10)(1/10+1/30)=3天。所以从开
9、始到完工共需:8+3=11(天) 例5一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天? 解一:如果16天两队都不休息,可以完成的工作量是 (120)16+(130)16=4/3 由于两队休息期间未做的工作量是4/3-1=1/3 乙队休息期间未做的工作量是 1/3-1/203=11/60 乙队休息的天数是 11/60(1/30)=11/2 答:乙队休息了5天半. 解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份. 两队休息期间未做的工作量是 (3+2)16- 60= 20(份)
10、. 因此乙休息天数是 (20- 3 3) 2= 5.5(天). 解三:甲队做2天,相当于乙队做3天. 甲队休息3天,相当于乙队休息4.5天. 如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是 16-6-4.5=5.5(天). 例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天? 解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙. 设乙的工作量为60份(15与20的最小公倍数),张每天完成4份
11、,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-48)份.由张、李合作需要 (60-48)(4+3)=4(天). 8+4=12(天). 答:这两项工作都完成最少需要12天. 例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他 要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天? 解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份. 两人合作,共完成 3 0.8 + 2 0.9= 4.2(份). 因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是 (30-38)(4.2-3)=5(天). 很
12、明显,最后转化成“鸡兔同笼”型问题. 例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快 如果这件工作始终由甲一人单独来做,需要多少小时? 解:乙6小时单独工作完成的工作量是 乙每小时完成的工作量是 两人合作6小时,甲完成的工作量是 甲单独做时每小时完成的工作量 甲单独做这件工作需要的时间是 答:甲单独完成这件工作需要33小时. 这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便. 例8就是如此.例8也可以整数化,当求出乙每 有一点方便,但好处不大.不必多此一举. 多人的工程问题 我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,
13、但是解题的基本思路还是差不多. 例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成? 解:设这件工作的工作量是1. 甲、乙、丙三人合作每天完成 减去乙、丙两人每天完成的工作量,甲每天完成 答:甲一人独做需要90天完成. 例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些? 例10一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙
14、做的天数的2倍,终于做完了这件工作.问总共用了多少天? 解:甲做1天,乙就做3天,丙就做32=6(天). 说明甲做了2天,乙做了23=6(天),丙做26=12(天),三人一共做了 2+6+12=20(天). 答:完成这项工作用了20天. 本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了 例11一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天? 解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 工程 问题 综合
限制150内