1.5定积分的概念.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《1.5定积分的概念.doc》由会员分享,可在线阅读,更多相关《1.5定积分的概念.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.5 定积分的概念三维目标:知识与技能:通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;借助于几何直观体会定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分3.理解掌握定积分的几何意义和性质;过程与方法:通过问题的探究体会逼近、以直代曲的数学思想方法。情感态度与价值观:通过分割、逼近的观点体会定积分的来历,使学生从本质上理解定积分的几何意义,从而激发学生学习数学的兴趣。教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义教学难点:定积分的概念、定积分的几何意义教学过程:一创设情景问题:我们在小学、初中就学习过求平面图形面积的问题。有的是规则的平面图形,但现实
2、生活中更多的是不规则的平面图形。对于不规则的图形我们该如何求面积?比如浙江省的国土面积。此问题在学生九年级中已有涉及,在九年级时学生了解过以下求不规则面积的方法:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”。方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近。方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P足够大时,统计落入不规则图形中的点数A,则图形的面积与正方形面积的比约为。方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正
3、方形面积的比是重量之比。二合作探究问题一 曲边梯形的面积 如图,阴影部分类似于一个梯形,但有一边是曲线的一段,我们把由直线和曲线所围成的图形称为曲边梯形如何计算这个曲边梯形的面积? 探究1:分割,怎样分割?分割成多少个?分成怎样的形状?有几种方案? (分割)提出自己的看法,同伴之间进行交流。探究2:采用哪种好?把分割的几何图形变为代数的式子。(近似代替)、(求和)写出面积求和式。老师巡视,给予指导,即时纠正学生中的运算错误。及时实物投影比较三种求和式的优劣,规定近似代替的原则。探究3:如何用数学的形式表达分割的几何图形越来越多? (取极限)写出分割无限多时,相应的数学含义。 探究4:采用过剩求
4、和与不足求和所得到的结果一样,其意义是什么?(夹逼定理的意义)思考:(1)曲边梯形与“直边图形”的区别? (2)能否将求这个曲边梯形面积S的问题转化为求“直边图形”面积的问题?分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段“以直代曲”的思想的应用例如:求图中阴影部分是由抛物线,直线以及轴所围成的平面图形的面积S。把区间分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值分割越细,面积的近似值就越精确。当
5、分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积解:(1)分割在区间上等间隔地插入个点,将区间等分成个小区间: , 记第个区间为,其长度为分别过上述个分点作轴的垂线,从而得到个小曲边梯形,他们的面积分别记作: , 显然,(2)近似代替记,如图所示,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从图形上看,就是用平行于轴的直线段近似的代替小曲边梯形的曲边(如图)这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有 (3)求和由,上图中阴影部分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.5 积分 概念
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内