0608打卡题目及答案(7年级).docx
《0608打卡题目及答案(7年级).docx》由会员分享,可在线阅读,更多相关《0608打卡题目及答案(7年级).docx(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在直角坐标系中,已知点 A(a,0),B(b,c),C(d,0),a 是-8 的立方根,方程 2x3b-5-3y2b-2c+5=1 是关于 x,y 的二元一次方程,d 为不等式组 xb,x6 的最大整数解(1)求点 A、B、C 的坐标;(2)如图 1,若 D 为 y 轴负半轴上的一个动点,当 ADBC 时,ADO 与BCA 的平分线交于 M 点,求M 的度数;(3)如图 2,若 D 为 y 轴负半轴上的一个动点,连 BD 交 x 轴于点 E,问是否存在点 D, 使 SADESBCE?若存在,请求出 D 的纵坐标 yD 的取值范围;若不存在,请说明理由【分析】(1)根据立方根的概念、二元一次方程
2、组的定义、一元一次不等式组的解法分别 求出 a、b、c、d,得到点 A、B、C 的坐标;(2)作 MHAD,根据平行线的性质得到BCA=OAD,得到ADO+BCA=90,根据角平分线的定义得到ADM+BCM=45,根据平行线的性质计算即可;(3)连 AB 交 y 轴于 F,根据题意求出点 F 的坐标,根据三角形的面积公式列出方程,解方程即可【解答】解:(1)-8 的立方根是-2,a=-2,方程 2x3b-5-3y2b-2c+5=1 是关于 x,y 的二元一次方程,3b51,2b2c+51, 解得,b=2,c=4,不等式组 xb,x6 的最大整数解是 5, 则 A(-2,0)、B(2,4)、C(
3、5,0);(2)作 MHAD,ADBC,MHBC,AOD=90,ADO+OAD=90,ADBC,BCA=OAD,ADO+BCA=90,ADO 与BCA 的平分线交于 M 点,ADM= 12ADO,BCM= 12BCA,ADM+BCM=45,MHAD,MHBC,NMD=ADM,HMC=BCM,M=NMD+HMC=ADM+BCM=45;(3)存在,连 AB 交 y 轴于 F,设点 D 的纵坐标为 yD,SADESBCE,SADE+SABESBCE+SABE,即 SABDSABC,A(-2,0),B(2,4),C(5,0),SABC=14,点 F 的坐标为(0,2),SABD= 12(2-yD)2+ 12(2-yD)2=4-2y,由题意得,4-2yD14, 解得,yD-5,D 在 y 轴负半轴上,yD0,D 的纵坐标 yD 的取值范围是-5yD0【点评】本题考查的是二元一次方程的概念、立方根的概念、一元一次不等式组的解法以及 三角形的面积计算,掌握相关的概念和性质是解题的关键
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 0608 打卡 题目 答案 年级
限制150内