2022高考数学一轮复习课时规范练26平面向量的数量积与平面向量的应用文含解析北师大版.docx
《2022高考数学一轮复习课时规范练26平面向量的数量积与平面向量的应用文含解析北师大版.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习课时规范练26平面向量的数量积与平面向量的应用文含解析北师大版.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时规范练26平面向量的数量积与平面向量的应用基础巩固组1.(2020河北保定一模,文4)已知a与b均为单位向量,若b(2a+b),则a与b的夹角为()A.30B.45C.60D.1202.(2019北京,理7)设点A,B,C不共线,则“AB与AC的夹角为锐角”是“|AB+AC|BC|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.(2020全国2,文5)已知单位向量a,b的夹角为60,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b4.(2020湖南郴州二模,文7)已知向量a=(2,-3),b=(3,m),且ab,则向量a在
2、a+b方向上的投影为()A.262B.-262C.13D.-135.在ABC中,若AB=(1,2),AC=(-x,2x)(x0),则当BC最小时,C=()A.90B.60C.45D.306.(2020河北邢台模拟,理3)设非零向量a,b满足|a|=3|b|,cos=13,a(a-b)=16,则|b|=()A.2B.3C.2D.57.(2020辽宁大连模拟,文9)已知扇形OAB的半径为2,圆心角为23,点C是弧AB的中点,OD=-12OB,则CDAB的值为()A.3B.4C.-3D.-48.已知平面向量OA,OB满足|OA|=|OB|=1,OAOB=0,且OD=12DA,E为OAB的外心,则ED
3、OB=()A.-12B.-16C.16D.129.(2020全国1,理14)设a,b为单位向量,且|a+b|=1,则|a-b|=.10.(2020湖南长郡中学四模,理13)已知向量a=(1,2),b=(k,1),且2a+b与向量a的夹角为90,则向量a在向量b方向上的投影为.11.(2020山东齐鲁备考联盟校阶段检测)已知向量a=(cos ,sin ),b=(cos ,sin ),c=(-1,0).(1)求向量b+c的模的最大值;(2)设=4,且a(b+c),求cos 的值.综合提升组12.(2020皖豫名校联考,理10)在菱形ABCD中,ABC=120,AC=23,BM+12CB=0,DC=
4、DN,若AMAN=29,则=()A.18B.17C.16D.1513.(2020陕西西安中学八模,理7)如图所示,已知正六边形P1P2P3P4P5P6,则下列向量的数量积中最大的是()A.P1P2P1P3B.P1P2P1P4C.P1P2P1P5D.P1P2P1P614.在矩形ABCD中,AB=3,AD=4,AC与BD相交于点O,过点A作AEBD,垂足为E,则AEEC=()A.725B.14425C.125D.122515.(2020浙江,17)已知平面单位向量e1,e2满足|2e1-e2|2,设a=e1+e2,b=3e1+e2,向量a,b的夹角为,则cos2的最小值是.16.已知向量a=(co
5、s x,sin x),b=(3,-3),x0,.(1)若ab,求x的值;(2)记f(x)=ab,求f(x)的最大值和最小值以及对应的x的值.创新应用组17.已知直线y=x+m和圆x2+y2=1交于A,B两点,O为坐标原点,若AOAB=32,则实数m=()A.1B.32C.22D.12参考答案课时规范练26平面向量的数量积与平面向量的应用1.Db(2a+b),b2a+|b|2=0.又|a|=|b|=1,ab=-12,cos=ab|a|b|=-12,a与b的夹角为120.故选D.2.CA,B,C三点不共线,|AB+AC|BC|AB+AC|AB-AC|AB+AC|2|AB-AC|2ABAC0AB与A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 课时 规范 26 平面 向量 数量 应用文 解析 北师大
限制150内