2022高考数学一轮复习课时规范练43圆的方程文含解析北师大版.docx
《2022高考数学一轮复习课时规范练43圆的方程文含解析北师大版.docx》由会员分享,可在线阅读,更多相关《2022高考数学一轮复习课时规范练43圆的方程文含解析北师大版.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时规范练43圆的方程基础巩固组1.已知圆x2+y2+kx+2y+k2=0,当圆的面积最大时,圆心的坐标是()A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)2.(2020山东滨州期末)已知圆的方程为x2+y2-6x=0,过点P(1,2)的该圆的所有弦中,最短弦的长为()A.12B.1C.2D.43.已知点P为圆C:(x-1)2+(y-2)2=4上一点,A(0,-6),B(4,0),则|PA+PB|的最大值为()A.26+2B.26+4C.226+4D.226+24.圆心在x+y=0上,且与x轴交于点A(-3,0)和B(1,0)的圆的方程为()A.(x+1)2+(y-1)2=5
2、B.(x-1)2+(y+1)2=5C.(x-1)2+(y+1)2=5D.(x+1)2+(y-1)2=55.如果圆(x-a)2+(y-a)2=1(a0)上总存在一点到原点的距离为3,则实数a的取值范围为()A.2,2B.2,22C.1,2D.1,226.(2020广东广州期中)圆x2+y2-2x+4y-3=0上到直线x+y+3=0的距离为22的点的个数为()A.1B.2C.3D.47.(2020北京,5)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.78.设点P是函数y=-4-(x-1)2图像上的任意一点,点Q坐标为(2a,a-3)(aR),则|PQ|
3、的最小值为.9.已知等腰三角形ABC,其中顶点A的坐标为(0,0),底边的一个端点B的坐标为(1,1),则另一个端点C的轨迹方程为.10.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程.综合提升组11.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得OMN=45,则x0的取值范围是()A.-1,1B.-12,12C.-2,2D.-22,2212.(2020福建厦门一模)在ABC中,AB=4,AC=2,A=3,动点P在以点A为圆心,半径为1的圆上,则PBPC的最小值为.13.(2020山东
4、聊城期中)已知曲线方程为x2+y2-2x-4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OMON(O是坐标原点),求m的值.创新应用组14.(2020安徽安庆三环高中月考)过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是.15.点M(x,y)在曲线C:x2-4x+y2-21=0上运动,t=x2+y2+12x-12y-150-a,且t的最大值为b,若a,bR+,则1a+1+1b的最小值为.参考答案课时规范练43圆的方程1.D当圆的半径最大时,圆的面积最
5、大,已知圆的一般方程x2+y2+kx+2y+k2=0,其圆心为-k2,-1,半径为r=4-3k22,可知当k=0时,r取最大值,即圆的面积最大时,圆心的坐标为(0,-1),故选D.2.C由x2+y2-6x=0,得(x-3)2+y2=9,所以圆心坐标为(3,0),半径为3.如图所示,当过点P(1,2)的直线与连接P与圆心的直线垂直时,弦AB最短,则最短弦长为232-(3-1)2+(0-2)2=2.3.C取AB的中点D(2,-3),则PA+PB=2PD,|PA+PB|=|2PD|,|PD|的最大值为圆心C(1,2)与D(2,-3)的距离d再加半径r,又因为d=1+25=26,所以d+r=26+2.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 课时 规范 43 方程 解析 北师大
限制150内