【志鸿优化设计】2021高考数学二轮专题升级训练 解答题专项训练(解析几何) 理 新人教A版.doc
《【志鸿优化设计】2021高考数学二轮专题升级训练 解答题专项训练(解析几何) 理 新人教A版.doc》由会员分享,可在线阅读,更多相关《【志鸿优化设计】2021高考数学二轮专题升级训练 解答题专项训练(解析几何) 理 新人教A版.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题升级训练 解答题专项训练(解析几何)1.已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使得l被圆C截得的弦为AB,且以AB为直径的圆经过原点?若存在,写出直线l的方程;若不存在,说明理由.2.已知过抛物线y2=2px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1b0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.5.已知点F1,F2分别为椭圆C:=1(ab0)的左、右焦点,P是椭圆C上的一点,且|F1F2|=2,F1PF2=,F1PF2的
2、面积为.(1)求椭圆C的方程;(2)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的kR,是否为定值?若是,求出这个定值;若不是,说明理由.6.已知A(-2,0),B(2,0),点C,点D满足|=2,).(1)求点D的轨迹方程;(2)过点A作直线l交以A,B为焦点的椭圆于M,N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程.7.已知双曲线E:=1(a0,b0)的焦距为4,以原点为圆心,实半轴长为半径的圆和直线x-y+=0相切.(1)求双曲线E的方程;(2)已知点F为双曲线E的左焦点,试问在x轴上是否存在一定点M,过点M任意作一条直线交双
3、曲线E于P,Q两点(P在Q点左侧),使为定值?若存在,求出此定值和所有的定点M的坐标;若不存在,请说明理由.#1.解:假设l存在,设其方程为y=x+m,代入x2+y2-2x+4y-4=0,得2x2+2(m+1)x+m2+4m-4=0.再设A(x1,y1),B(x2,y2),于是x1+x2=-(m+1),x1x2=.以AB为直径的圆经过原点,即直线OA与OB互相垂直,也就是kOAkOB=-1,所以=-1,即2x1x2+m(x1+x2)+m2=0,将x1+x2=-(m+1),x1x2=,代入整理得m2+3m-4=0,解得m=-4或m=1.故所求的直线存在,且有两条,其方程分别为x-y+1=0,x-
4、y-4=0.2.解:(1)直线AB的方程是y=2,与y2=2px联立,从而有4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,知4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+(4,4)=(4+1,4-2),又=8x3,所以2(2-1)2=8(4+1),即(2-1)2=4+1,解得=0,或=2.3.解:(1)由题意,知椭圆的焦点在y轴上,设椭圆方程为=1(ab0),由题意,知a=2,b=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 志鸿优化设计 【志鸿优化设计】2021高考数学二轮专题升级训练 解答题专项训练解析几何 新人教A版 优化 设计 2021 高考 数学 二轮 专题 升级 训练 解答 专项 解析几何 新人
链接地址:https://www.taowenge.com/p-28128750.html
限制150内