【最高考】2021届高考数学二轮专题突破课堂讲义 第7讲 三角函数的图象与性质.doc
《【最高考】2021届高考数学二轮专题突破课堂讲义 第7讲 三角函数的图象与性质.doc》由会员分享,可在线阅读,更多相关《【最高考】2021届高考数学二轮专题突破课堂讲义 第7讲 三角函数的图象与性质.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题二 三角函数与平面向量第7讲三角函数的图象与性质 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数yAsin(x)的图象及性质2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等)3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易这几年的高考加强了对三角函数定义、图象和性质的考查在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法
2、、数形结合法等1. 函数y2sin21是最小正周期为_的_(填“奇”或“偶”)函数答案:奇解析:ycossin2x.2. 函数f(x)lgxsinx的零点个数为_答案:3解析:在(0,)内作出函数ylgx、ysinx的图象,即可得到答案3. 函数y2sin(3x),的一条对称轴为x,则_答案:解析:由已知可得3k,kZ,即k,kZ.因为|,所以.4. 若f(x)2sinx(01)在区间上的最大值是,则_答案:解析:由0x,得0x,则f(x)在上单调递增,且在这个区间上的最大值是,所以2sin,且00,0)的部分图象如图所示(1) 求f(0)的值;(2) 若00),所得函数的图象关于直线x对称(
3、1) 求m的最小值;(2) 证明:当x时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x1,x2(0,),x1x2,且f(x1)f(x2)1,求x1x2的值(1) 解:f(x)sin2x2sinxcosx3cos2xsin2x3cos2xsin2x2cos2.因为将f(x)的图象沿x轴向左平移m个单位(m0),得到g(x)2的图象,又g(x)的图象关于直线x对称,所以2k,即m(kZ)因为m0,所以m的最小值为.(2) 证明:因为x,所以42x,所以f(x)在上是减函数所以当x1、x2,且x1f(x2),从而经过任意两点(x1,f(x1)和(x2,f(x2)的直线的斜率k0.
4、(1) 若yf(x)在上单调递增,求的取值范围;(2) 令2,将函数yf(x)的图象向左平移个单位,再向上平移1个单位,得到函数yg(x)的图象,区间a,b(a,bR且a0,根据题意有 0.(2) f(x)2sin2x,g(x)2sin212sin1,g(x)0sinxk或xk,kZ, 即g(x)的零点相邻间隔依次为和,故若yg(x)在a,b上至少含有30个零点,则ba的最小值为1415. 已知函数f(x)sin(x)cos(x)(00)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为.(1) 求f的值;(2) 将函数yf(x)的图象向右平移个单位后,得到函数yg(x)的图象,求函数g(
5、x)的单调递减区间解:(1) f(x)sin(x)cos(x)22sin.因为f(x)为偶函数,所以对xR,f(x)f(x)恒成立,因此sinsin,即sinxcoscosxsinsinxcos()cosxsin,整理得sinxcos0.因为0,且xR,所以cos0.又0,故.所以f(x)2sin2cosx.由题意得2,所以2,故f(x)2cos2x,因此f2cos.(2) 将f(x)的图象向右平移个单位后,得到f的图象,所以g(x)f2cos2cos.当2k2x2k(kZ),即kxk(kZ)时,g(x)单调递减,因此g(x)的单调递减区间为(kZ)题型四 三角函数图象及性质、三角公式综合运用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最高考 【最高考】2021届高考数学二轮专题突破课堂讲义 第7讲 三角函数的图象与性质 最高 2021 高考 数学 二轮 专题 突破 课堂 讲义 三角函数 图象 性质
限制150内