2022高考数学二轮复习专题练三核心热点突破专题六函数与导数第3讲导数与函数的单调性极值最值问题含解析.doc
《2022高考数学二轮复习专题练三核心热点突破专题六函数与导数第3讲导数与函数的单调性极值最值问题含解析.doc》由会员分享,可在线阅读,更多相关《2022高考数学二轮复习专题练三核心热点突破专题六函数与导数第3讲导数与函数的单调性极值最值问题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲导数与函数的单调性、极值、最值问题高考定位利用导数研究函数的性质,能进行简单的计算,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题.真 题 感 悟1.(2020全国卷)函数f(x)x42x3的图象在点(1,f(1)处的切线方程为()A.y2x1 B.y2x1C.y2x3 D.y2x1解析f(1)121,切点坐标为(1,1),又f(x)4x36x2,所以切线的斜率kf(1)4136122,切线方程为y12(x1),即y2x1.故选B.答案B2.(2020全国卷)设函数f(x).若f(1),则a_.解析f(x),可得f(1),即,解得a1.答案1
2、3.(2020新高考山东、海南卷)已知函数f(x)aex1ln xln a.(1)当ae时,求曲线yf(x)在点(1,f(1)处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围.解f(x)的定义域为(0,),f(x)aex1.(1)当ae时,f(x)exln x1,f(1)e1,f(1)e1,曲线yf(x)在点(1,f(1)处的切线方程为y(e1)(e1)(x1),即y(e1)x2.直线y(e1)x2在x轴,y轴上的截距分别为,2.因此所求三角形的面积S|x|y|2.(2)当0a1时,f(1)aln a1.当a1时,f(x)ex1ln x,f(x)ex1.当x(0,1)时
3、,f(x)0;当x(1,)时,f(x)0.所以当x1时,f(x)取得最小值,最小值为f(1)1,从而f(x)1.当a1时,f(x)aex1ln xln aex1ln x1.综上,a的取值范围是1,).4.(2020全国卷)已知函数f(x)exax2x.(1)当a1时,讨论f(x)的单调性;(2)当x0时,f(x)x31,求a的取值范围.解(1)当a1时,f(x)exx2x,xR,f(x)ex2x1.故当x(,0)时,f(x)0.所以f(x)在(,0)单调递减,在(0,)单调递增.(2)f(x)x31等价于ex1.设函数g(x)ex(x0),则g(x)exxx2(2a3)x4a2exx(x2a1
4、)(x2)ex.若2a10,即a,则当x(0,2)时,g(x)0.所以g(x)在(0,2)单调递增,而g(0)1,故当x(0,2)时,g(x)1,不符合题意.若02a12,即a,则当x(0,2a1)(2,)时,g(x)0.所以g(x)在(0,2a1),(2,)单调递减,在(2a1,2)单调递增.由于g(0)1,所以g(x)1当且仅当g(2)(74a)e21,即a.所以当a0,且a1);(4)(logax)(a0,且a1,x0).3.利用导数研究函数的单调性(1)导数与函数单调性的关系.f(x)0是f(x)为增函数的充分不必要条件,如函数f(x)x3在(,)上单调递增,但f(x)0.f(x)0是
5、f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f(x)0时,则f(x)为常数函数.(2)利用导数研究函数单调性的方法.若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f(x)0或f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f(x)0,则f(x0)为函数f(x)的极小值.(2)设函数yf(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得.易错提醒若函数的导数存在,某点的导数等于零是函数在该点取得极值的必要不充分条件.热点一导数的几何意义【例1】 (1)(2019全国卷)已知曲线y
6、aexxln x在点(1,ae)处的切线方程为y2xb,则()A.ae,b1 B.ae,b1C.ae1,b1 D.ae1,b1(2)(多选题)下列四条曲线中,直线y2x与其相切的有()A.曲线y2ex2B.曲线y2sin xC.曲线y3xD.曲线yx3x2解析(1)因为yaexln x1,所以ky|x1ae1,所以曲线在点(1,ae)处的切线方程为yae(ae1)(x1),即y(ae1)x1.所以即(2)直线y2x的斜率为k2,A中,若f(x)2ex2,则由f(x)2ex2,得x0,f(0)0,因为点(0,0)在直线y2x上,所以直线y2x与曲线y2ex2相切.B中,若f(x)2sin x,则
7、由f(x)2cos x2,得x2k(kZ),f(2k)0,因为点(0,0)在直线y2x上,所以直线y2x与曲线y2sin x相切.C中,若f(x)3x,则由f(x)32,得x1,f(1)4,f(1)4,因为(1,4),(1,4)都不在直线y2x上,所以直线y2x与曲线y3x不相切.D中,若f(x)x3x2,则由f(x)3x212,得x1,f(1)2,f(1)2,其中(1,2)在直线y2x上,所以直线y2x与曲线yx3x2相切.故选ABD.答案(1)D(2)ABD探究提高利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化,其中关键是确定切点的坐标.【训练1】 (1)(
8、2019江苏卷)在平面直角坐标系xOy中,点A在曲线yln x上,且该曲线在点A处的切线经过点(e,1)(e为自然对数的底数),则点A的坐标是_.(2)(2020全国卷)曲线yln xx1的一条切线的斜率为2,则该切线的方程为_.解析(1)设A(m,n),则曲线yln x在点A处的切线方程为yn(xm).又切线过点(e,1),所以有n1(me).再由nln m,解得me,n1.故点A的坐标为(e,1).(2)设切点坐标为(x0,y0),因为yln xx1,所以y1,所以切线的斜率为12,解得x01.所以y0ln 1112,即切点坐标为(1,2),所以切线方程为y22(x1),即2xy0.答案(
9、1)(e,1)(2)2xy0热点二利用导数研究函数的单调性角度1讨论函数的单调性(区间)【例2】 (2020全国卷)已知函数f(x)2ln x1.(1)若f(x)2xc,求c的取值范围;(2)设a0,讨论函数g(x)的单调性.解设h(x)f(x)2xc,则h(x)2ln x2x1c,其定义域为(0,),h(x)2.(1)当0x0;当x1时,h(x)0.所以h(x)在区间(0,1)单调递增,在区间(1,)单调递减.从而当x1时,h(x)取到最大值,最大值为h(1)1c.故当且仅当1c0,即c1时,f(x)2xc.所以c的取值范围为1,).(2)g(x),x(0,a)(a,).g(x).取c1得h
10、(x)2ln x2x2,h(1)0,则由(1)知,当x1时,h(x)0,即1xln x0.故当x(0,a)(a,)时,1ln 0,从而g(x)0恒成立,m.令g(x),则当1,即x1时,函数g(x)取最大值1,故m1.(2)对f(x)求导,得f(x)x4.由f(x)0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,所以t1t1或t3t1,解得0t1或2t0或f(x)0.2.(1)已知函数的单调性,求参数的取值范围,应用条件f(x)0(或f(x)0),x(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),
11、应注意参数的取值是f(x)不恒等于0的参数的范围.(2)若函数yf(x)在区间(a,b)上不单调,则转化为f(x)0在(a,b)上有解(需验证解的两侧导数是否异号).【训练2】 (2020百师联盟考试)已知函数f(x)axexx22x.(1)讨论函数f(x)的单调性;(2)当x0时,f(x)0,求正实数a的取值范围.解(1)f(x)a(x1)ex2x2(x1)(aex2).当a0时,由f(x)0,得x1;由f(x)0,得x1.f(x)在(,1)上单调递增,f(x)在(1,)上单调递减.当a2e时,f(x)0,即f(x)在R上单调递增,当0a2e时,由f(x)0,得1xln ;由f(x)0,得x
12、1或xln .f(x)在(,1)和上单调递增,f(x)在上单调递减.当a2e时,由f(x)0,得ln x1;由f(x)0,得x1或xln .故f(x)在(1,)和上单调递增,f(x)在上单调递减.(2)当a2e时,由第(1)问知f(x)在(0,)上是增函数,f(x)f(0)0,满足题意.当0a2e时,由(1)知:当ln 0时,即2a2e时,f(x)在(0,)单调递增,即f(x)f(0)0,符合题意.当ln 0时,即0a2时,f(x)在单调递减,在单调递增.因此当x时,f(x)f(0)0,不符合题意.综上可知,实数a的取值范围是2,).热点三利用导数研究函数的极值和最值【例4】 设函数f(x)e
13、2xaln x.(1)讨论f(x)的导函数f(x)零点的个数;(2)证明:当a0时,f(x)2aaln.(1)解f(x)的定义域为(0,),f(x)2e2x(x0).当a0时,f(x)0,f(x)没有零点.当a0时,设u(x)e2x,v(x),因为u(x)e2x在(0,)上单调递增,v(x)在(0,)上单调递增,所以f(x)在(0,)上单调递增.又f(a)0,当b满足0b且b时,f(b)0(讨论a1或a1来检验),当a1时,则0b,f(b)2e2b2e4a2(e2a)0;当0a1时,则0b,f(b)2e2b2e40.故当a0时,f(x)存在唯一零点.(2)证明由(1),可设f(x)在(0,)上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 二轮 复习 专题 核心 热点 突破 函数 导数 调性 极值 问题 解析
链接地址:https://www.taowenge.com/p-28137511.html
限制150内