九年级数学上册第一章一元二次方程一元二次方程经典题型汇总新版苏科版.doc
《九年级数学上册第一章一元二次方程一元二次方程经典题型汇总新版苏科版.doc》由会员分享,可在线阅读,更多相关《九年级数学上册第一章一元二次方程一元二次方程经典题型汇总新版苏科版.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程经典题型汇总一、一元二次方程的概念 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。一填空题:1关于x的方程mx-3x= x-mx+2是一元二次方程,则m_2方程4x(x-1)=2(x+2)+8化成一般形式是_,二次项系数是_,一次项系数是_,常数项是_.3关于x的一元二次方程(m+3) x+4x+ m- 9=0有一个解为0 , 则m=_.4、.若一元二次方程ax2+b
2、x+c=0(a0)有一个根为-1,则a、b、c的关系是_5、当 时,方程不是一元二次方程,当 时,上述方程是一元二次方程。二选择题:6在下列各式中 x+3=x; 2 x- 3x=2x(x- 1) 1 ; 3 x- 4x 5 ; x=- +2是一元二次方程的共有( ) A 0个 B 1个 C 2个 D 3个7、下列方程中,一元二次方程是( )(A) (B) (C) (D) 8一元二次方程的一般形式是( )A x+bx+c=0 B a x+c=0 (a0 ) C a x+bx+c=0 D a x+bx+c=0 (a0)9方程6 x- 5=0的一次项系数是( ) A 6 B 5 C -5 D 010
3、、关于的一元二次方程的一个根是0,则值为( )A、 B、 C、或 D、三、.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项一般形式二次项系数一次项系数常数项x(3x + 2)=6(3x + 2)(3 t)+ t=9二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,当b0时,一元二次方程有2个不相等的实数根;II当=0时,一元二次方程有2个相同的实数根;III当0时,一元二次方程没有实数根练习:一、选择题1、一元二次方程的根的情况为
4、()有两个相等的实数根有两个不相等的实数根 只有一个实数根没有实数根2、若关于x的一元二次方程没有实数根,则实数m的取值范围是() Am-1 Cml Dm-13、一元二次方程x2x20的根的情况是() A有两个不相等的正根 B有两个不相等的负根 C没有实数根 D有两个相等的实数根图(7)4、已知函数的图象如图(7)所示,那么关于的方程的根的情况是( )A无实数根 B有两个相等实数根C有两个异号实数根D有两个同号不等实数根5、下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x240(B)4x24x10(C)x2x30(D)x22x106、下列方程中有实数根的是()(A)x22x
5、30(B)x210(C)x23x10(D)7、已知关于x 的一元二次方程 有两个不相等的实数根,则m的取值范围是( )A m1 B m2 Cm 0 Dm08、如果2是一元二次方程x2c的一个根,那么常数c是( )。A、2 B、2 C、4 D、4二、填空题1、方程的解为 。2、阅读材料:设一元二次方程的两根为,则两根与方程系数之间有如下关系:,根据该材料填空:已知,是方程的两实数根,则的值为_3、关于x的一元二次方程x2bxc0的两个实数根分别为1和2,则b_;c_4、方程的解是 5、已知方程有两个相等的实数根,则6、方程x2+2x=0的解为 9、已知x是一元二次方程x23x10的实数根,那么代
6、数式的值为10、已知是关于的方程的一个根,则_11、若关于的一元二次方程没有实数根,则的取值范围是 12、写出一个两实数根符号相反的一元二次方程:_。13、已知是一元二次方程的一个根,则方程的另一个根是 四、一元二次方程根与系数的关系 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。五、一元二次方程应用题 学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上
7、,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.1、增长率问题恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、商品定价益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则
8、可卖出(35010a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?3、储蓄问题王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)4、趣味问题一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好
9、请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?5、古诗问题读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?6、象棋比赛象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.7、情景对话春秋旅行社为吸引市民组团去天水湾风
10、景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?图1如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.8、等积变形将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.图2图4图3以上两种方案是否都能符合条件?若能,请计算出图2
11、中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.9、动态几何问题如图4所示,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.10、梯子问题一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶
12、端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?图511、航海问题如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)12、图表信息图6
13、如图6所示,正方形ABCD的边长为12,划分成1212个小正方形格,将边长为n(n为整数,且2n11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张nn的纸片正好盖住正方形ABCD左上角的nn个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n1)(n1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1) 由于正方形纸片边长n的取值不同,(2) 完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.当n2时,
14、求S1S2的值;是否存在使得S1S2的n值?若存在,请求出来;若不存在,请说明理由.13、探索存在性问题将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.14、平分几何图形的周长与面积问题如图7,在等腰梯形ABCD中,ABDC5,AD4,BC10.点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示BEF的面积;(2)是否存在线段
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 第一章 一元 二次方程 经典 题型 汇总 新版 苏科版
限制150内