2021-2022学年度沪教版七年级数学第二学期第十四章三角形章节测试试卷(精选含详解).docx
《2021-2022学年度沪教版七年级数学第二学期第十四章三角形章节测试试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版七年级数学第二学期第十四章三角形章节测试试卷(精选含详解).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版七年级数学第二学期第十四章三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )A6cmB5cmC3cmD1cm2、下列叙述正确
2、的是( )A三角形的外角大于它的内角B三角形的外角都比锐角大C三角形的内角没有小于60的D三角形中可以有三个内角都是锐角3、如图,BD是的角平分线,交AB于点E若,则的度数是( )A10B20C30D504、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A10B8C7D45、尺规作图:作角等于已知角示意图如图所示,则说明的依据是( ) ASSSBSASCASADAAS6、以下长度的三条线段,能组成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,97、定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA
3、+B证法1:如图,A70,B63,且ACD133(量角器测量所得)又13370+63(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180(三角形内角和定理),又ACD+ACB180(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定理的证明才完整D证法2用严谨的推理证明了该定理8、BP是ABC的平分线,CP是ACB的邻补角的平分线,ABP=20,ACP=50,则P=( )A30B40C50D609、如图,
4、若绕点A按逆时针方向旋转40后与重合,则( ) A40B50C70D10010、如图,在和中,连接,交于点,连接下列结论:;平分;平分其中正确的个数为( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,交BC的延长线于点E,若,点C是BE中点,则_2、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD4,AB4,AC=1,CED=120,点E是AB的中点,求CD的最大值”哥哥看见了,提示他将ACE和BDE分别沿CE,连接AB最后小华求解正确,得到CD的最大值是 _3、若等腰三角形两底角平分线相交所形成的钝角是128,则这
5、个等腰三角形的顶角的度数是_4、在中,若,则_5、如图,AB,CD相交于点O,请你补充一个条件,使得,你补充的条件是_三、解答题(10小题,每小题5分,共计50分)1、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段ADDC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CDDA以每秒3个单位长度的速度向终点A运动MEPQ于点E,NFPQ于点F,设运动的时间为秒(1)在运动过程中当M、N两点相遇时,求t的值(2)在整个运动过程中,求DM的长(用含t的代数式表示)(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长2、阅读填空,将三角尺(MPN,MP
6、N=90)放置在ABC上(点P在ABC内),如图所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索:如图所示,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 3、如图,在ABC中,CE平分ACB交AB于点E,AD是ABC边BC上的高,AD与CE相交于点F,且ACB80,求AFE的度数4、如图,在中,、分别是上的高和中线,求的长5、如图,在ABC中,BAC90,AB
7、AC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(2)若ABE75,求证:BECF6、如图,点A,B,C,D在一条直线上,(1)求证:(2)若,求F的度数7、如图,灯塔B在灯塔A的正东方向,且灯塔C在灯塔A的北偏东20方向,灯塔C在灯塔B的北偏西50方向(1)求的度数;(2)一轮船从B地出发向北偏西50方向匀速行驶,5h后到达C地,求轮船的速度8、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE
8、平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 9、数学课上,王老师布置如下任务:如图,已知MAN45,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB2A下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A1
9、0、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数-参考答案-一、单选题1、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2x3+2,解得:1x5,只有C选项在范围内故选:C【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和2、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大
10、,故B不符合题意;三角形的内角可以小于60,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.3、B【分析】由外角的性质可得ABD20,由角平分线的性质可得DBC20,由平行线的性质即可求解.【详解】解:(1)A30,BDC50,BDCAABD,ABDBDCA503020,BD是ABC的角平分线,DBCABD20,DEBC,EDB=DBC20,故选:B【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线
11、的定义,灵活应用这些性质解决问题是解决本题的关键4、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键5、A【分析】利用基本作图得到ODOCODOC,CDCD,则根据全等三角形的判定方法可根据“SSS”可判断OCDOCD,然后根据全等三角形的性质得到AOBAOB【详解】解:由作法可得ODOCODOC,CDCD,所以根据“SSS”可判断OCDOCD,所以AOBAOB故选:A【点睛】
12、本题考查了作图基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理6、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可7、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才
13、是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.8、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出P的度数【详解】BP是ABC中ABC的平分线,CP是ACB的外角的平分线,ABP=CBP=20,ACP=MCP=50,PCM是BC
14、P的外角,P=PCMCBP=5020=30,故选:A【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和9、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键10、C【分析】由全等三角形的判定及性质对每个结论推理论证即可【详解】又,故正确由三角形外角的性质有则故正确作于,于,如图所示:则,在和中,在和中,平分故正确假设平分则即由知又为对顶角在和中,即AB=AC又故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 沪教版 七年 级数 第二 学期 第十四 三角形 章节 测试 试卷 精选 详解
链接地址:https://www.taowenge.com/p-28147862.html
限制150内