2021-2022学年沪科版九年级数学下册第24章圆月考试题.docx
《2021-2022学年沪科版九年级数学下册第24章圆月考试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪科版九年级数学下册第24章圆月考试题.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D182、下面的图形中既是轴对称图形又是中
2、心对称图形的是( )ABCD3、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD4、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D405、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D66、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D7、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是(
3、)A50B60C40D308、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)9、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD810、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,C90,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数)那么常数a的值等于_2、如图,O的半径为2,ABC是O的内接三角形,连接OB、OC,若弦BC的长度为,则BAC_度3、两直角边分别为6、8,那么的内接圆的半径为_4、如
4、图,点A,B,C在O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _5、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90后得到的A2B2C22、如图,AB为O的弦,OCAB于点M,交O于点C若O的半径为10,OM:MC
5、3:2,求AB的长3、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程作法:如图,延长交于点,延长交于点;分别连接,并延长相交于点;连接并延长交于点所以线段即为中边上的高(1)根据小芸的作法,补全图形;(2)完成下面的证明证明:是的直径,点,在上,_(_)(填推理的依据),_是的两条高线,所在直线交于点,直线也是的高所在直线是中边上的高4、如图1,点O为直线AB上一点,将两个含60角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中(1)将图1中的三角板OPQ绕点O按逆时
6、针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为_度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3的速度按逆时针方向旋转,将射线OB绕点O以每秒5的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值5、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动
7、点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系-参考答案-一、单选题1、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积2236(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长2、A【详解】解:A、
8、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键3、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题
9、意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合4、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90
10、,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用5、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键6、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30,推出OA=2AB=6,利用勾
11、股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OC,OB,AC,AB都是圆O的切线,OCA=OBA=90,OC=OB,又OA=OA,RtOCARtOBA(HL),OAC=OAB,DAC=60,AOB=30,OA=2AB=6,圆O的直径为,故选D【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键7、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 沪科版 九年级 数学 下册 24 圆月 考试题
限制150内