2021-2022学年沪教版七年级数学第二学期第十四章三角形专项测评练习题.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021-2022学年沪教版七年级数学第二学期第十四章三角形专项测评练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版七年级数学第二学期第十四章三角形专项测评练习题.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版七年级数学第二学期第十四章三角形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等腰三角形有一个角为50,则这个等腰三角形的底角度数是( )A65B65或80C50或80D50或652、
2、如图, ABCCDA,BAC=80,ABC=65,则CAD的度数为( )A35B65C55D403、若等腰三角形的一个外角是70,则它的底角的度数是( )A110B70C35D554、下列三角形与下图全等的三角形是( )ABCD5、如图,已知为的外角,那么的度数是( )A30B40C50D606、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D467、有两边相等的三角形的两边长为,则它的周长为( )ABCD或8、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个9、下列说法错误的是( )A任意一个
3、直角三角形都可以被分割成两个等腰三角形B任意一个等腰三角形都可以被分割成两个等腰三角形C任意一个直角三角形都可以被分割成两个直角三角形D任意一个等腰三角形都可以被分割成两个直角三角形10、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB10米,A、B间的距离不可能是()A5米B10米C15米D20米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点G分别为AD与CF的中点,若,则AC=_2、如图,已知AB3,ACCD1,DBAC90,则ACE的面积是 _3、如图,点F,A,D,C在同一条直线上,则AC等于_4、如图,_5、如图,
4、在中,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_三、解答题(10小题,每小题5分,共计50分)1、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明2、如图,将一副直角三角板的直角顶点C叠放在一起(1)如图(1),若DCE33,则BCD ,ACB (2)如图(1),猜想ACB与DCE的大小有何特殊关系?并说明理由(3)如图(2),若是两个同样的直角三角板60锐角的顶点A重合在一
5、起,则DAB与CAE的数量关系为 3、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:4、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:5、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边求证6、在中,点D是直线AC上一动点,连接BD并延长至点E,使过点E作于点F(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是_(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:(
6、3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是_7、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF(1)求证:;(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC依题意补全图形;判断的形状,并证明你的结论8、已知POQ=120,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明9、 “三等分角”是被称为几何三大难题的三个古
7、希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB10、如图,在等腰ABC和等腰ADE中,ABAC,ADAE,BACDAE且C、E、D三点共线,作AMCD于M若BD5,DE4,求CM-参考答案-一、单选题1、D【分析
8、】可以是底角,也可以是顶角,分情况讨论即可【详解】当角为底角时,底角就是,当角为等腰三角形的顶角时,底角为,因此这个等腰三角形的底角为或故选:D【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键2、A【分析】先根据三角形内角和定理求出ACB=35,再根据全等三角形性质即可求出CAD=35【详解】解:BAC=80,ABC=65,ACB=180-BAC-ABC=35,ABCCDA,CAD=ACB=35故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键3、C【分析】先求出与这个外角相
9、邻的内角的度数为,再根据三角形的内角和定理即可得【详解】解:等腰三角形的一个外角是,与这个外角相邻的内角的度数为,这个等腰三角形的顶角的度数为,底角的度数为,故选:C【点睛】本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键4、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,
10、故此选项错误故选:C【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键5、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答6、C【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644【详解】解:如图:l1l2,146,3146,又l3l4,2904644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是1807、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪
11、是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论8、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关
12、系,准确分析判断是解题的关键9、B【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案【详解】解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;故选:B【点睛】本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断10、A【分析】根据三角形的三边关系得出5AB25,根据AB的范围判断即可【详解】解:连
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 沪教版 七年 级数 第二 学期 第十四 三角形 专项 测评 练习题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内