2021-2022学年度北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析).docx
《2021-2022学年度北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个正多边形的内角是120,则这个正多边形的边数是()A3B4C5D62、如图,在ABCD中,AD=2AB
2、,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD3、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D84、已知正边形的每一个内角都是144,则的值是()A12B10C8D65、一个正多边形的一个外角是,则该正多边形的内角和是( )ABCD6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220B180C270D2407、如图,正五边形ABCDE点D、E分别在直线m、n上若mn,120,则2为( )A5
3、2B60C58D568、平行四边形中,则的度数是( )ABCD9、如图,点O是ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定10、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD,AD5,AB8,点A的坐标为(3,0)点C的坐标为_2、如图,在中,、分别是、的中点,连结若,则_3、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分B
4、CD,交AD于点E,AB=6,EF=2,则BC的长为_4、如图,在中,已知,依次连接三边中点,得,再依次连接的三边中点,得,则的周长_的周长_5、在平行四边形ABCD中,若A=130,则B=_,C=_,D=_三、解答题(5小题,每小题10分,共计50分)1、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,
5、M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从三个命题中选择一个进行证明;(2)请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结论BMCN是否成立若成立,请给予证明;若不成立,请说明理由2、如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?3、如图,ABCD的对角线A
6、C,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF4、(1)计算:(2x2)3(xy)2(2x)(2)已知一个多边形的内角和比它的外角和的3倍少180,求这个多边形的边数5、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时
7、针排列)当最小时,则MDG的面积为_-参考答案-一、单选题1、D【分析】设该正多边形为边形,根据多边形的内角和公式,代入求解即可得出结果【详解】解:设该正多边形为边形,由题意得:,解得:,故选:D【点睛】题目主要考查多边形内角和,掌握多边形的内角和公式是解题的关键2、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AE
8、F,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DC
9、F=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点3、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QD
10、B=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键4、B【分析】根据多边形的内角和公式和已知得出144n(n2)180,解方程即可【详解】解:根据题意得:144n(n2)180,解得:n10,故选:B【点睛】本题考查了多边形的内角和定理,能根据题意得出方程144n(n2)180是解此题的关键5、D【分析】由正多边形的外角和及一个外角即可知道该正多边形的边数,再由多边形的内角和定理即可求得结果【详解】多边形的外角和为360,且正多边形的一个外角为40该正多边形的边数为:36040=9此正多边
11、形的内角和为:(9-2)180=1260故选:D【点睛】本题考查了多边形的外角和性质与多边形的内角和定理,掌握这两个知识是关键6、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键7、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 北师大 八年 级数 下册 第六 平行四边形 综合 练习 试题 答案 解析
链接地址:https://www.taowenge.com/p-28149862.html
限制150内