2021-2022学年最新北师大版九年级数学下册第三章-圆章节训练练习题(无超纲).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021-2022学年最新北师大版九年级数学下册第三章-圆章节训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版九年级数学下册第三章-圆章节训练练习题(无超纲).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上,点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1
2、a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A外2、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D33、如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A3B4CD4、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A
3、22.5B45C90D67.55、下列说法中,正确的是()A相等的圆心角所对的弧相等B过任意三点可以画一个圆C周长相等的圆是等圆D平分弦的直径垂直于弦6、如图,点A,B,C均在上,当时,的度数是( )A65B60C55D507、如图,正的边长为,边长为的正的顶点R与点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )ABCD8、已知O的半径为3,点P到圆心O的距离为4,则点P与O的位置关系是()A点P在O外B点P在O上C点P在O内D无法确定9、如图,中,则等于( )ABCD10、如图,已知AB是O的直径,C
4、D是弦,若BCD36,则ABD等于()A54B56C64D66第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,半径为2的扇形AOB的圆心角为120,点C是弧AB的中点,点D、E是半径OA、OB上的动点,且满足DCE60,则图中阴影部分面积等于_2、如图,点D是O上一点,C是弧AB的中点,若ACB116,则BDC的度数是 _3、圆锥底面圆的半径为2cm,其侧面展开图的圆心角是180,则圆锥的侧面积是_4、圆形角是270的扇形的半径为4cm,则这个扇形的面积是_5、如图,PA,PB分别切O于点A,B,Q是优弧上一点,若P=40,则Q的度数是_三、解答题(5小题,每小题
5、10分,共计50分)1、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN
6、1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围2、如图,ABC内接于O,高AD经过圆心O(1)求证:;(2)若,O的半径为5,求ABC的面积 3、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,若DAC=35,求BAC的大小;(3)若PC2,PB2,求阴影
7、部分的面积(结果保留)4、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长5、已知:A,B是直线l上的两点求作:ABC,使得点C在直线l上方,且AC=BC,作法:分别以A,B为圆心,AB长为半径画弧,在直线l上方交于点O,在直线l下方交于点E;以点O为圆心,OA长为半径画圆;作直线OE与直线l上方的O交于点C;连接AC,BCABC就是所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连
8、接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB( )(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC( )(填推理的依据)ABC就是所求作的三角形-参考答案-一、单选题1、A【分析】根据数轴以及圆的半径可得当d=r时,A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:圆心A在数轴上的坐标为3,圆的半径为2,当d=r时,A与数轴交于两点:1、5,故当a=1、5时点B在A上;当dr即当1a5时,点B在A内;当dr即当a1或a5时,点B在A外由以上结论可知选项B、C、D正确,选项A错误故
9、选A【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键2、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中
10、点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解3、D【分析】作OMAB于M,ONCD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解【详解】作OMAB于M,ONCD于N,连接OB,OD,OB=5,BM= ,OM=AB=CD=8,ON=OM=4,弦AB、CD互相垂直,DPB=90,
11、OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=3故选C【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线4、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键5、C【分析】根据确定圆的条件,圆心角、弦、弧之间的关系,垂径定理和圆周角定理逐个判断即可【详解】A、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法不正确;B、不在同一直线上的三个点确定一个圆,若这三个点在一条直线上,就不能确定圆,故本选项说法不正确;C
12、、周长相等半径就相等,半径相等的两个圆能重合,故本选项说法正确;D、平分弦(不是直径)的直径垂直于弦,故本选项说法不正确;故选:C【点睛】本题考查的是对圆的认识,圆心角、弦、弧之间的关系,垂径定理,利用相关的知识逐项判断是基本的方法6、C【分析】先由OB=OC,得到OCB=OBC=35,从而可得BOC=180-OCB-OBC=110,再由圆周角定理即可得到答案【详解】解:OB=OC,OCB=OBC=35,BOC=180-OCB-OBC=110,故选C【点睛】本题主要考查了圆周角定理,三角形内角和定理,等腰三角形的性质,熟知圆周角定理是解题的关键7、B【分析】从图中可以看出在AB边,翻转的第一次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 最新 北师大 九年级 数学 下册 第三 章节 训练 练习题 无超纲
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内